TOSHIBA SSM3J05FU TOSHIBA FIELD EFFECT TRANSISTOR SILICON P CHANNEL MOS TYPE # S S M 3 J 0 5 F U POWER MANAGEMENT SWITCH Unit in mm HIGH SPEED SWITCHING APPLICATIONS Small Package Low on Resistance : $R_{on} = 3.3 \Omega \text{ Max.} (@V_{GS} = -4 \text{ V})$: $R_{on} = 4.0 \Omega \text{ Max.} (@V_{GS} = -2.5 \text{ V})$ Low Gate Threshold Voltage ## MAXIMUM RATINGS (Ta = 25°C) | , | SYMBOL | | | | |-------------------------------------|--------------------------|---|---|--| | CHARACTERISTIC | | | UNIT | | | Drain-Source Voltage | | | V | | | Gate-Source Voltage | | | V | | | DC | I_{D} | -200 | mA | | | Pulse | I_{DP} | -400 | | | | Drain Power Dissipation (Ta = 25°C) | | | mW | | | Channel Temperature | | | °C | | | Storage Temperature Range | | | °C | | | | DC
Pulse
a = 25°C) | $\begin{array}{c c} & V_{DS} \\ \hline & V_{GSS} \\ \hline DC & I_D \\ \hline Pulse & I_{DP} \\ a = 25 ^{\circ}C) & P_D^* \\ \hline & T_{ch} \\ \hline \end{array}$ | $\begin{array}{c cccc} & V_{DS} & -20 \\ & V_{GSS} & \pm 12 \\ \hline DC & I_D & -200 \\ Pulse & I_{DP} & -400 \\ a = 25^{\circ}C) & P_{D}^{*} & 150 \\ & T_{ch} & 150 \\ \hline \end{array}$ | | 2.1 ± 0.1 1.25 ± 0.1 2.0 ± 0.2 $0 \sim 0.1$: GATE **SOURCE** 3 : DRAIN **USM JEDEC** EIAJ SC-70 TOSHIBA 2-2E1E Weight: 0.006 g (Typ.) * Mounted on FR4 board. $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu Pad} : 0.6 \text{ mm}^2 \times 3)$ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. The information contained herein is subject to change without notice. #### **MARKING** ## **EQUIVALENT CIRCUIT (TOP VIEW)** #### HANDLING PRECAUTION When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials. ELECTRICAL CHARACTERISTICS (Ta = 25°C) | CHARAC | CTERISTIC | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |-----------------------------------|---------------|-----------------------------|---|------|------|------|---------| | Gate Leakage | Current | I_{GSS} | $V_{GS} = \pm 12 V, V_{DS} = 0$ | _ | _ | ±1 | μ A | | Drain-Source Breakdown
Voltage | | V (BR) DSS | $I_D = -1 \text{ mA}, V_{GS} = 0$ | -20 | _ | _ | V | | Drain Cut-off | Current | $I_{ m DSS}$ | $V_{DS} = -20 \text{ V}, V_{GS} = 0$ | _ | _ | -1 | μ A | | Gate Threshol | ld Voltage | $ m V_{th}$ | $V_{DS} = -3 V, I_{D} = -0.1 mA$ | -0.6 | _ | -1.1 | V | | Forward Tran
Admittance | sfer | Y _{fs} | $V_{DS} = -3 \text{ V}, I_D = -50 \text{ mA}$ (Note) | 100 | _ | _ | mS | | Drain-Source ON Resistance | | R _{DS} (ON) | $I_D = -100 \text{ mA}, V_{GS} = -4 \text{ V}$ (Note) | _ | 2.1 | 3.3 | - Ω | | | | | $I_{D} = -50 \text{ mA}, V_{GS} = -2.5 \text{ V}$ (Note) | _ | 3.2 | 4.0 | | | Input Capacit | ance | C_{iss} | $V_{DS} = -3 \text{ V}, V_{GS} = 0,$
f = 1 MHz | _ | 27 | _ | pF | | Reverse Trans
Capacitance | sfer | $\mathrm{C}_{\mathrm{rss}}$ | $egin{aligned} V_{ m DS} = -3 V, V_{ m GS} = 0, \\ f = 1 { m MHz} \end{aligned}$ | | 7 | _ | pF | | Output Capac | itance | C_{oss} | $V_{DS} = -3 \text{ V}, V_{GS} = 0,$
f = 1 MHz | | 21 | | pF | | Switching | Turn-on Time | t _{on} | $V_{DD} = -3 \text{ V}, I_{D} = -50 \text{ mA},$ | | 70 | | ng | | Time | Turn-off Time | ${ m t_{off}}$ | $V_{GS} = 0 \sim -2.5 \text{ V}$ | _ | 70 | _ | ns | (Note): Pulse test ## SWITCHING TIME TEST CIRCUIT #### **PRECAUTION** V_{th} can be expressed as voltage between gate and source when low operating current value is $I_D = -100 \,\mu\text{A}$ for this product. For normal switching operation, $V_{GS\,(on)}$ requires higher voltage than V_{th} and $V_{GS\,(off)}$ requires lower voltage than V_{th} . (Relationship can be established as follows: $V_{GS(off)} < V_{th} < V_{GS(on)}$) Please take this into consideration for using the device. VGS recommended voltage of -2.5 V or higher to turn on this product.