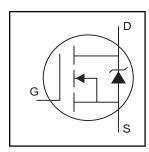
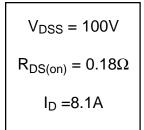
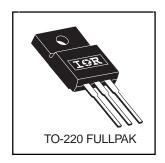
International Rectifier

PRELIMINARY

IRLI520N


HEXFET® Power MOSFET


- Logic-Level Gate Drive
- Advanced Process Technology
- Isolated Package
- High Voltage Isolation = 2.5KVRMS ⑤
- Sink to Lead Creepage Dist. = 4.8mm
- Fully Avalanche Rated


Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	8.1	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	5.7	Α
I _{DM}	Pulsed Drain Current ①⑥	35	-
P _D @T _C = 25°C	Power Dissipation	30	W
	Linear Derating Factor	0.20	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy@6	85	mJ
I _{AR}	Avalanche Current①⑥	6.0	Α
E _{AR}	Repetitive Avalanche Energy①	3.0	mJ
dv/dt	Peak Diode Recovery dv/dt 36	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		5.0	00/14/
$R_{\theta JA}$	Junction-to-Ambient		65	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	•	•						
	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250\mu A$		
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA [©]		
				0.18		V _{GS} = 10V, I _D = 6.0A ④		
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.22	Ω	V _{GS} = 5.0V, I _D = 6.0A ④		
				0.26		V _{GS} = 4.0V, I _D = 5.0A ④		
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$		
g _{fs}	Forward Transconductance	3.1			S	V _{DS} = 25V, I _D = 6.0A®		
	Duein to Course Lealings Courset			25	μA	$V_{DS} = 100V, V_{GS} = 0V$		
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C		
	Gate-to-Source Forward Leakage			100	- A	V _{GS} = 16V		
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V		
Qg	Total Gate Charge			20		$I_D = 6.0A$		
Q _{gs}	Gate-to-Source Charge			4.6	nC	$V_{DS} = 80V$		
Q _{gd}	Gate-to-Drain ("Miller") Charge			10	1	V _{GS} = 5.0V, See Fig. 6 and 13 4 6		
t _{d(on)}	Turn-On Delay Time		40			$V_{DD} = 50V$		
t _r	Rise Time		35		ns	$I_{D} = 6.0A$		
t _{d(off)}	Turn-Off Delay Time		23		115	$R_G = 11\Omega, V_{GS} = 5.0V$		
t _f	Fall Time		22			$R_D = 8.2\Omega$, See Fig. 10 \oplus 6		
	Internal Dunin Industria		4.5		-11	Between lead,		
L _D	Internal Drain Inductance		4.5			6mm (0.25in.)		
L _S	Internal Source Inductance		7.5		— nH	from package		
						and center of die contact		
C _{iss}	Input Capacitance		440			V _{GS} = 0V		
Coss	Output Capacitance		97		pF	$V_{DS} = 25V$		
C _{rss}	Reverse Transfer Capacitance		50		ן יי	f = 1.0MHz, See Fig. 5©		
С	Drain to Sink Capacitance		12			f = 1.0MHz		

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			0.4		MOSFET symbol		
	(Body Diode)			8.1	A	showing the		
I _{SM}	Pulsed Source Current			0.5	— 35	35	^	integral reverse
	(Body Diode) ①⑥							p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 6.0$ A, $V_{GS} = 0$ V ④		
t _{rr}	Reverse Recovery Time		110	160	ns	$T_J = 25^{\circ}C, I_F = 6.0A$		
Q _{rr}	Reverse Recovery Charge		410	620	nC	di/dt = 100A/µs 46		
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)						

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L = 4.7mH $R_G = 25\Omega$, $I_{AS} = 6.0$ A. (See Figure 12)
- $(3) \ I_{SD} \leq 6.0A, \ di/dt \leq 340A/\mu s, \ V_{DD} \leq V_{(BR)DSS},$ $T_{J} \leq 175^{\circ}C$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ t=60s, f=60Hz
- © Uses IRL520N data and test conditions