Small Outline, 5 Lead, Low Input Current, High Gain Optocouplers

Technical Data

HCPL-M700
HCPL-M701

Features

- Surface Mountable
- Very Small, Low Profile JEDEC Registered Package Outline
- Compatible with Infrared Vapor Phase Reflow and Wave Soldering Processes
- High Current Transfer Ratio - 2000\%
- Low Input Current Capability - 0.5 mA
- TTL Compatible Output $\mathrm{V}_{\text {OL }}=0.1 \mathrm{~V}$
- Guaranteed ac and dc Performance Over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- High Output Current 60 mA
- Recognized under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltage of $\mathbf{3 7 5 0}$ Vac, 1 Minute
- Lead Free Option "-000E"

Description

These small outline, low input current, high gain optocouplers are single channel devices in a five lead miniature footprint. They are electrically equivalent to the following Agilent optocouplers:

SO-5 Package	Standard DIP	SO-8 Package
HCPL-M700	6N138	HCPL-0700
HCPL-M701	6N139	HCPL-0701

TheSO-5JEDEC registered (MO155) package outline does not require "through holes" in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

These high gain series optocouplers use a Light Emitting

Diode and an integrated high gain photodetector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and outputstage resultsin TTL compatible saturation voltages and high speed operation. Where desired the V_{CC} and V_{O} terminals may be tied together to achieve conventional photodarlington operation.

[^0]The HCPL-M701 is for use in CMOS,LSTTL or other low power applications. A 400% minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The HCPL-M700 is designed for use mainly in TTL applications. CurrentTransfer Ratio is 300\%
minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA [1 TTL Unit Load (U.L.)]. A 300\% CTR enables operation with 1 U.L. out with a $2.2 \mathrm{k} \Omega$ pull-up resistor.

Selection for lower input currents down to $250 \mu \mathrm{~A}$ is available upon request.

Outline Drawing (JEDEC MO-155)

DIMENSIONS IN MILLIMETERS (INCHES)

* MAXIMUM MOLD FLASH ON EACH SIDE IS 0.15 mm (0.006)

NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

Land Pattern Recommendation

Schematic

Solder Reflow Thermal Profile

Recommended Pb-Free IR Profile

Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	L(IO1)	≥ 5	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L(IO2)	≥ 5	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

Electrical Specifications

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) unless otherwise specified. (See note 6.)

Parameter	Symbol	Device HCPL-	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	M701	$\begin{aligned} & \hline 400 \\ & 500 \end{aligned}$	$\begin{aligned} & \hline 2000 \\ & 1600 \end{aligned}$	$\begin{array}{\|l\|} \hline 3500 \\ 2600 \end{array}$	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$	2, 3	1
		M700	300	1600	2600		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	$\mathrm{V}_{\text {OL }}$	M701		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$	1	
		M700		0.1	0.4		$\begin{gathered} \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{gathered}$		
Logic High Output	I_{OH}	M701		0.05	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$		
		M700		0.1	250		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V} \end{aligned}$		
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$			0.4	1.5	mA	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ \mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{gathered}$		
Logic High Supply Current	$\mathrm{I}_{\text {CCH }}$			0.01	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}			1.4	$\begin{gathered} 1.7 \\ \hline 1.75 \end{gathered}$	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	4	
Input Reverse Breakdown Voltage	BV_{R}		5				$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Temperature Coefficient of Forward Voltage	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Input- Output Insulation	$\mathrm{V}_{\text {ISO }}$		3750			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2, 3
Resistance (InputOutput)	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$			10^{12}		Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}_{\mathrm{DC}}$		2
Capacitance (InputOutput)	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		2

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Specifications

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Device HCPL-	Min.	Typ.*	Max.	Unit	Test Conditions		Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	M701		25	75	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$,	$\begin{gathered} 5,6, \\ 7 \end{gathered}$	
					100			$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$		
				0.5	2		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$,		
					3			$\mathrm{R}_{\mathrm{L}}=270 \Omega$		
		M700		5	20		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$,		
					25			$\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$		
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$	M701		10	60		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$,	$\begin{gathered} 5,6, \\ 7 \end{gathered}$	
					90			$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$		
				1	10		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$,		
					15			$\mathrm{R}_{\mathrm{L}}=270 \Omega$		
		M700		10	35		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$,		
					50			$\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$		1,000	10,000		V/us	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=10 \end{aligned}$		8	4, 5
Common Mode Transient Immunity at Logic Low Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$		1,000	10,000		V/ $/ \mathrm{s}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{kS} \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=10 \end{aligned}$		8	4, 5

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Notes:

1. dc CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100.
2. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4,5 and 6 shorted together.

3 . In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}_{\text {RMS }}$ for 1 second (leakage detection current limit, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 5 \mu \mathrm{~A}$).
4. Common transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the rising edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the falling edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
5. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommended value is $\mathrm{R}_{\mathrm{CC}}=220 \Omega$.
6. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 4 and 6 is recommended.

Figure 1. dc Transfer Characteristics.

Figure 4. Input Diode Forward Current vs. Forward Voltage.

Figure 2. Current Transfer Ratio vs. Forward Current.

Figure 5. Propagation Delay vs. Temperature.

Figure 3. Output Current vs. Input Diode Forward Current.

Figure 6. Non-Saturated Rise and Fall Times vs. Load Resistance.

Figure 7. Switching Test Circuit.

Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.
www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or (916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (+65) 67562394
India, Australia, New Zealand: (+65) 67551939
Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only)
Korea: (+65) 67551989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 67552044
Taiwan: (+65) 67551843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5989-0796EN
December 28, 2004
5989-2110EN

[^0]: CAUTION: The small device geometries inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by $E S D$.

