

♦ STRUCTURE Silicon Monolithic Integrated Circuit

♦ PRODUCT DDC2TM DISPLAY ID ROM

♦ PART NUMBER BU9882-W Series

PART NUMBER	PACKAGE
BU9882-W	DIP14
BU9882F-W	SOP14
BU9882FV-W	SSOP14

♦ FEATURES For DDC2TM

2kbit (128word × 8bit × 2port) EEPROM Single power supply (2.5V ~ 5.5V) 100,000 erase/write cycles endurance

♦ ABSOLUTE MAXIMUM RATING (Ta=25°C)

Parameter	Symbol	nbol Rating		Unit
Supply Voltage	Vcc	-0.3~6.5		V
-	Pd	950 (BU9882-W) *1		
Power Dissipation		450 (BU9882F-W)	*2	mW
		350 (BU9882FV-W)	*3	1
Storage Temperature	Tstg	-65 ~ 125		°C
Operating Temperature	Topr	-40 ~ 85		°C
Terminal Voltage	_	-0.3∼Vcc+1.0 *4		V

^{*} Degradation is done at 9.5mW/°C(*1), 4.5mW/°C(*2), 3.5mW/°C(*3) for operation above 25°C

♦ RECOMMENDED OPERATING CONDITION

Parameter	Symbol	Rating	Unit
Supply Voltage	Vcc	2.5~5.5	٧
Input Voltage	VIN	0~Vcc+1.0	٧

Status of this document

The Japanese version of this document is the fomal specification.

A customer may use this translation version only for a reference to help reading the formal version.

If there are any differences in translation version of this document, formal version takes priority.

^{*4} Max 6.8V

♦ MEMORY CELL CHARACTERISTICS(Ta=25°C,Vcc=2.5~5.5V)

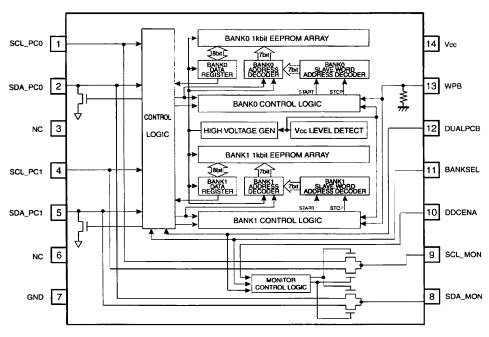
Parameter		Min.	Тур.	Max.	Unit
Write/Erase Cycle	*1	100,000	-	-	Cycle
Data Retention	*1	10	-	-	Year

OInitial Data: Memory array FFh *1 Not 100% TESTED

♦ DC OPERATING CHARACTERISTICS

(Unless otherwise specified Ta=-40~85°C, Vcc=2.5~5.5V)

(0111000 04110	Offices Outlet Wise specifica Tu			_	10 00 0, 100 2.0 0.017	
Parameter	Symbol	Spe	cifica	tion	Unit	
, sramoto		Min.	Тур.	Max.	•	
"H" Input Voltage1	VIHI	2	-	1	٧	
"L" Input Voltage I	VIL1	-	-	0.8	٧	Vcc≧4.0V
"L" Input Voltage2	VIL2	-	-	0.2Vcc	٧	Vcc <4.0V
"L" Output Voitage	VOL	-	-	0.4	>	SDA_PC0/1, IOL=3.0mA *1
Input Leakage	ILIT	-1		1	μА	SCL_PC0/1, DDCENA, BANKSEL
Current1	ILII	-'		. '	μΑ	VIN=0V~Vcc+1.0
Input Leakage Current2	IL12	-1	-	50	μА	WPB
Output Leakage	ilo	-1		1	μА	SDA_PC0/1.SCL/SDA_MON(DDCENA=GND)
Current	ILO	-1	_	'	μА	VOUT= 0 V∼Vcc+1.0
Operating Current	icc		1.5	3	mA	fSCL=400kHz, Vcc=5.5V
Operating Current	100	_	1.3	3	mA	tWR=10ms
						SCL/SDA_PC0/1=Vcc
Sharatha Carran	ISB		0.1	5		SCL/SDA_MON=High=Z
Standby Current	198	_	"."		μА	DDCENA=WPB=BANKSEL=GND
						DUALPCB=Vcc


- OThis product is not designed for protection against radioactive rays.
- *1 IOL at monitor mode (DDCENA=HIGH) is sum of current flowed from Pull up resistor on SDA_MON Side, and Pull up resistance on SDA_PC0/PC1.

♦ AC OPERATING CHARACTERISTICS

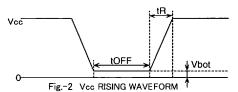
(Unless otherwise specified Ta=-40~85°C)

Parameter	Symbol	Fast=mode 2.5≦Voc≦5.5V			Standard-mode 2.5≦Vcc≨5.5V			Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.]
Clock Frequency	fSCL		-	400	-	-	100	kHz
Data Clock High Period	tHIGH	0.6	-	-	40	-	_	μs
Data Clock Low Period	tLOW	1.3	_	-	47	-	-	μs
SDA and SCL Rise Time	tR	-	-	0.3	-	-	1.0	μs
SDA and SCL Fall Time	tF	-	-	0.3	-	-	0.3	μs
Start Condition Hold Time	tHD:STA	0.6	-	-	4.0	-	-	με
Start Condition Setup Time	tSU:STA	06	-	-	4.7	-	-	μs
Input Data Hold Time	tHD:DAT	0	-	-	0	-	-	ns
Input Data Setup Time	tSU:DAT	100	-	-	250	-	-	r:s
Output Data Delay Time	t₽D	-	-	0.9	-	-	3.5	μs
Stop Condition Setup Time	tSU:STO	0.6	-	-	4.0	-	-	μs
Bus Free Time	tBUF	1.3	-	-	4.7	-	-	μѕ
Write Cycle Time	tWR	-	-	10	-	-	10	ms
Noise Spike Width (SDA and SCL)	tl	-	-	01	-	-	0.1	μs

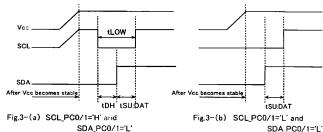
♦ BLOCK DIAGRAM

◇ PIN No./PIN NAME

PIN No.	PIN NAME
1	SCL_PC0
2	SDA_PC0
3	NC
4	SCL_PC1
5	SDA_PC1
6	NC
7	GND
8	SDA_MON
9	SCL_MON
10	DDCENA
11	BANKSEL
12	DUALPCB
13	WPB
14	Vcc


Fig.1 BLOCK DIAGRAM

♦NOTES FOR POWER SUPPLY


Vcc rises through the low voltage region in which internal circuit of IC and the controller are unstable, so that device may not work properly due to an incomplete reset of internal circuit. To prevent this, the device has the feature of P.O.R. and LVCC. In the case of power up, keep the following conditions to ensure functions of P.O.R. and LVCC.

- 1. It is necessary for SDA_PC0 and SDA_PC1 to be "HIGH", for SCL_PC0 and SCL_PC1 to be either "HIGH" or "LOW".
- 2. Follow the recommended conditions of tR, tOFF, Vbot for the function of P.O.R. during power up.

♦ Recommended conditions of tR, tOFF, Vbot					
tR	tOFF	Vbot			
Below 10ms	Above 10ms	Below 0.2V			
Below 100ms	Above 10ms	Below 0.1V			

- 3. Prevent SDA_PC0, SDA_PC1, SCL_PC0 and SCL_PC1 from being "High-Z". In case that condition 1. and/or 2. cannot be met, take following actions.
 - A) Unable to keep condition 1. (SDA_PC0 is "LOW" during power up, for example.)
 - → Control SDA_PC0 and SCL_PC0 to be "HIGH" as figure below. It applies to SDA_PC1 and SCL_PC1 also.
 - B) Unable to keep condition 2.
 - → After power become stable, execute software reset.
 - C) Unable to keep both conditions 1 and 2.
 - → Follow the instruction A first, then the instruction B.

SDA PC0/1='L'

CAUTIONS ON USE

(1) Absolute maximum ratings

If the absolute maximum ratings such as impressed voltage and operating temperature range and so forth are exceeded, LSI may be destructed. Do not impress voltage and temperature exceeding the absolute maximum ratings. In the case of fear exceeding the absolute maximum ratings, take physical safety countermeasures such as fuses, and see to it that conditions exceeding the absolute maximum ratings should not be impressed to LSI.

- (2) GND electric potential
 - Set the voltage of GND terminal lowest at any action condition. Make sure that each terminal voltages is lower than that of GND terminal.
- (3) Heat design
 - In consideration of permissible dissipation in actual use condition, carry out heat design with sufficient margin.
- (4) Terminal to terminal shortcircuit and wrong packaging
 - When to package LSI onto a board, pay sufficient attention to LSI direction and displacement. Wrong packaging may destruct LSI. And in the case of shortcircuit between LSI terminals and terminals and power source, terminal and GND owing to foreign matter, LSI may be destructed.
- (5) Strong electromagnetic field
 - Use in a strong electromagnetic field may cause malfunction, therefore, evaluated design sufficiently.

♦ PHYSICAL DIMENSION

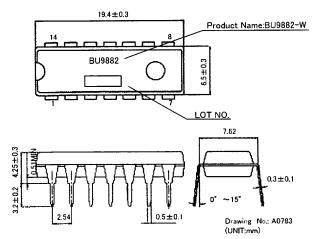


Fig.4-(a) PHYSICAL DIMENSION DIP14 (BU9882-W)

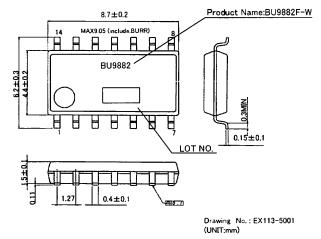


Fig.4-(b) PHYSICAL DIMENSION SOP14 (BU9882F-W)

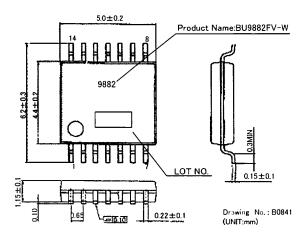


Fig.4-(c) PHYSICAL DIMENSION SSOP14(BU9882FV-W)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

