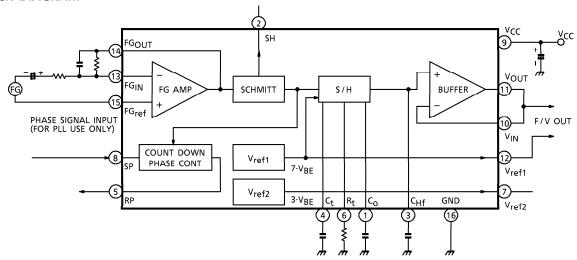

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7715P


FREQUENCY TO VOLTAGE CONVERTER

The TA7715P is a general purpose F-V converter designed for FDD, VTR, ATR and player F-servo system use. It contains High Gain Input Amplifier, Hysteresis Amplifier (for wave form shapping), and Sample-and-Hold type F-V conversion amplifier.

Weight: 1.11g (Typ.)

BLOCK DIAGRAM

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION
1	Co	Capacitor connection terminal for setting time constans (for F/V Amp.)
2	SH	Schmitt Amp. output terminal
3	C _{Hf}	Capacitor connection terminal forgetting time constants (for F/V buffer Amp.)
4	C _t	Capacitor connection terminal for setting time constants
5	RP	Phase control signal output terminal
6	Rt	Resistor connection terminal for setting time constants
7	V _{ref2}	Internal reference voltage output terminal
8	SP	Phase control signal input terminal
9	Vcc	Power supply input terminal
10	VIN	Buffer Amp. negative input terminal
11	Vout	Buffer Amp. output terminal
12	V _{ref1}	F/V Amp. reference voltage output terminal
13	FG _{IN}	FG Amp. negative-side input terminal
14	FGOUT	FG Amp. output terminal
15	FG _{ref}	FG Amp. positive-side input terminal
16	GND	GND terminal

OPERATION

TA7715P outputs control signals (F/V conversion output) generated by the sample and hold (S/H) circuit for each cycle of the frequency signal output.

Consequently, TA7715P offers a superior response to methods counting the monostable multivibrator cycles or the input signal cycles to drive a D/A converter and output a latched result. Fig.1 shows the input FG amp circuit, which amplifies the weak FG signal.

The Schmitt circuit in the next stage has the required hysteresis for wave-shaping and generates the signals needed for S/H.

S/H operations are based on the waveform-shaped FG output from the SH terminal (pin②). That is, the time constant capacitor C_t (pin④) is momentarily charged to the internal reference voltage $10 \cdot V_{BE}$ when the SH pulse (pin②) falls.

The hold pulse and reset pulse required for the S/H operation are generated by the voltage of this capacitor. The hold pulse is output until the voltage falls to $9 \cdot V_{BE}$. The reset pulse is output while the voltage is falling between $9 \cdot V_{BE}$ and $5 \cdot V_{BE}$.

The voltage of the C_t is discharged by the constant current (I_{O2}), which is determined by resistor R_t connected to the R_t terminal (pin©).

The S/H operation is based on the hold and reset pulses generated by the changes in the Ct voltage.

First, capacitor C_0 , which is connected to the C_0 terminal (pin①), is momentarily charged to $10 \cdot V_{BE}$ by the reset pulse and discharged by the constant current (I_{O3}), which is determined by R_t . F/V conversion is performed by designating the discharge time as the time from the reset pulse fall to the hold pulse rise.

In other words, the F/V conversion output is performed by retaining the C_0 terminal output with the hold pulse. (Fig.3)

The C_O output is transferred to C_{Hf} in the circuit and output through the buffer amp. The buffer amp output (V_{OUT} pin, pin(1)) changes to $\pm 3.V_{BE}$ with $7.V_{BE}$ as the center, that is, within the range of $4.V_{BE} \sim 10.V_{BE}$, according to the input frequency. Thus, the F/V conversion output is obtained by the output differential with the potential of the V_{ref1} terminal (pin(1)), which has a reference voltage of $7.V_{BE}$.

In addition, the conversion output can be amplified by the buffer amp using direct current. The gain in the Fig.2 example is a multiple of ((Ra + Rb) / Rb).

Although unlike C_0 , C_t , and R_t , the C_{Hf} value does not need to be precise, too large a value causes deterioration in response characteristics.

Too small a value causes F/V conversion error due to leakage.

If the FG frequency is in the range of 500~1kHz, use the values indicated in the application circuits.

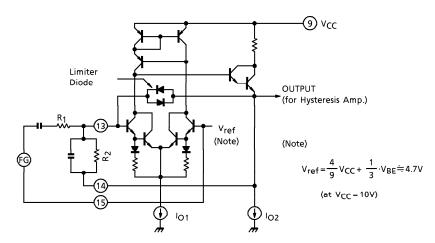


Fig.1 FG Amp.

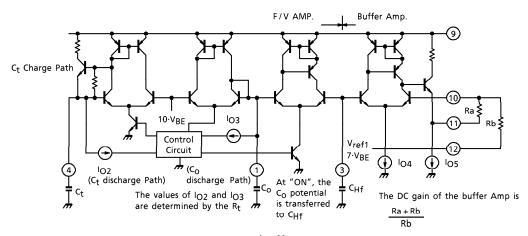


Fig.2 S/H, buffer Amp.

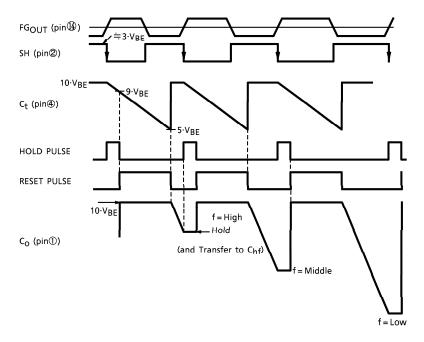
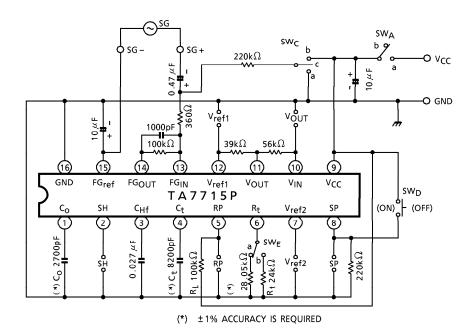


Fig.3 Timing chart

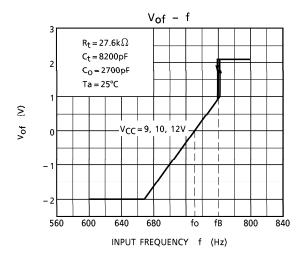
MAXIMUM RATINGS (Ta = 25°C)

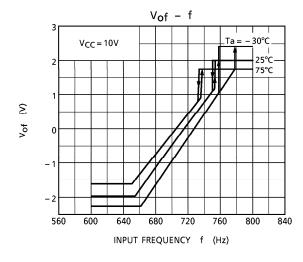

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V_{CC}	15	V
Power Dissipation (Note)	P_{D}	750	mW
Operating Temperature	T _{opr}	- 25∼75	°C
Storage Temperature	T_{stg}	- 55∼150	°C

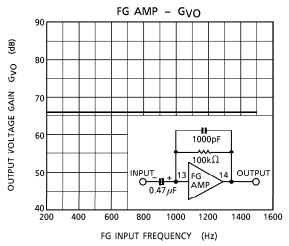
(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$.

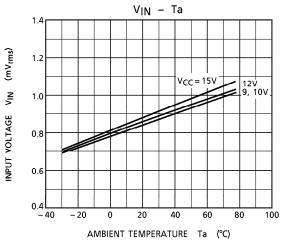
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 10V$, Ta = 25°C)

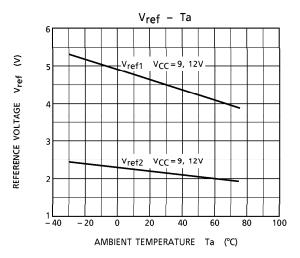
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage Range	V _{CC} (opr)		e _i = 2mV _{rms} , f = 726Hz	9	10	12	V
Supply Current	ICC	— e _i		2.5	_	10	mA
Input Sensing Voltage	V _{IN}	_	f = 726Hz	0.35	_	2.5	mV_{rms}
Peference Voltage	V _{ref1}	-	_	4.0	5.0	6.0	V
Reference Voltage	V _{ref2}			1.5	2.0	2.5	
F/V Converter Output Voltage	Vout		$e_i = 2mV_{rms}$, $f = 726Hz$ $R_f = 27.6k\Omega$	- 0.5	0	0.5	٧
F/V Converter Output Noise Voltage	VNF		$e_i = 2mV_{rms}$, $f = 726Hz$		_	5	m∨ _{rms}
Max. Output Voltage	V _{FH}	_	$e_i = 2mV_{rms}$, $f = 900 \pm 10Hz$	2.5	_	_	V
Iviax. Output voltage	V _{FL}		$e_i = 2mV_{rms}$, $f = 580 \pm 10Hz$		_	- 2.2	
RP Saturation Voltage	V _{RP} (sat)	_	$R_L = 100 k\Omega$	_	_	0.3	V

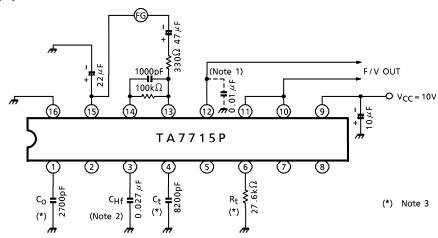

TEST CIRCUIT



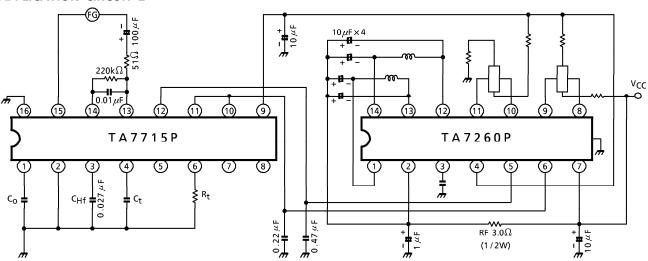

MEASURING METHOD


- (1) Operating voltage range
 - F/V conversion must be performed when V_{CC} is set between $9\sim12V$ with $e_i=2mV_{rms}$ and f=726Hz. At this time, SW_A is set to a, SW_C to OFF, SW_D to OFF, and SW_E to a.
- (2) Power supply current
 - In state (1), read power supply current.
- (3) Input operating voltage
 - In state (1), read the input level when the input level is gradually increased and the SH terminal is in operating mode (confirm square wave output of f = 726Hz with amplitude of about 3V).
- (4) Reference voltage 1
 - In state (1), read the DC voltage of V_{ref1} terminal.
- (5) Reference voltage 2
 - In state (1), read the DC voltage of V_{ref2} terminal.
- (6) F/V conversion output voltage
 - In state (1), read the voltage between terminal V_{ref1} - V_{OUT} . Set R_t = 27.6k Ω .
- (7) F/V conversion output noise voltage
 - In state (1), read the AC voltage of pin[®].
- (8) Maximum output voltage
 - In state (1), set the input frequency to the specified value and read the voltage between terminal $V_{\text{ref1}}\text{-}V_{\text{OUT}}$.
- (9) RP saturation voltage
 - In state (8), set the SP terminal to "OPEN" and read the DC voltage when the RP terminal is set to "ON".


Load resistor R $_{L}$ should have the specified value and be connected directly to the V $_{CC}$ terminal. If the RP terminal is "OFF", set the SW $_{D}$ to "ON" and measure the RP saturation voltage.

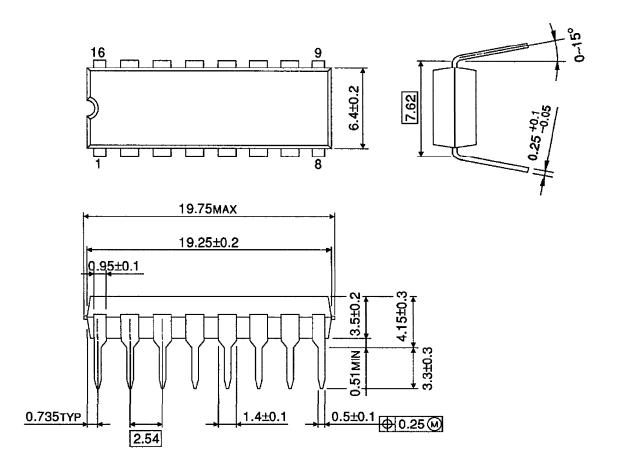


APPLICATION CIRCUIT 1


- (Note 1) Connect if required.
- (Note 2) C_{Hf} value is depend on Input Frequency and internal Bias Current (Base current). Recommended value is $0.027\mu F$ at Input Frequency range of 300 to 1kHz.
- (Note 3) Center Frequency and Jump Up Frequency are calculated by following equations.

$$f_0 = \frac{1}{R_t (5 \cdot C_t + 3 \cdot C_0)} (Hz)$$

$$f_B = 0.187 \frac{(5 \cdot C_t + 3 \cdot C_o)}{C_t} \cdot f_o \text{ (Hz)}$$


(Note 4) Recommended to use low leakage capacitance for C_{Hf}, C_o, C_t.

APPLICATION CIRCUIT 2

OUTLINE DRAWING

DIP16-P-300-2.54A Unit: mm

Weight: 1.11g (Typ.)