4.120 ± 30mV

3.5mA typ.

Lithium Ion Battery Charging Control (microcomputer-controlled type) (one cell) Monolithic IC MM1475

Outline

This IC is a lithium ion battery charging control IC. It is a 1-chip charging IC that combines constant current, constant voltage charging and protection circuits such as pre-charge and pre-charge timer battery temperature detection, all in one. The quick charge timer and full charge detection function have been eliminated, as compared to MM1433, and charging ON/OFF is controlled externally.

Features

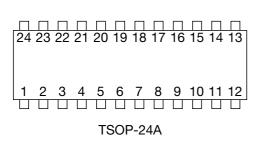
1. Output voltage (Ta = $0^{\circ}C \sim +50^{\circ}C$)

6. Battery temperature detection function

- 2. Consumption current
- 3. Pre-charge function
- 4. Adaptor (primary side) abnormality detection function
- 5. Timer error time

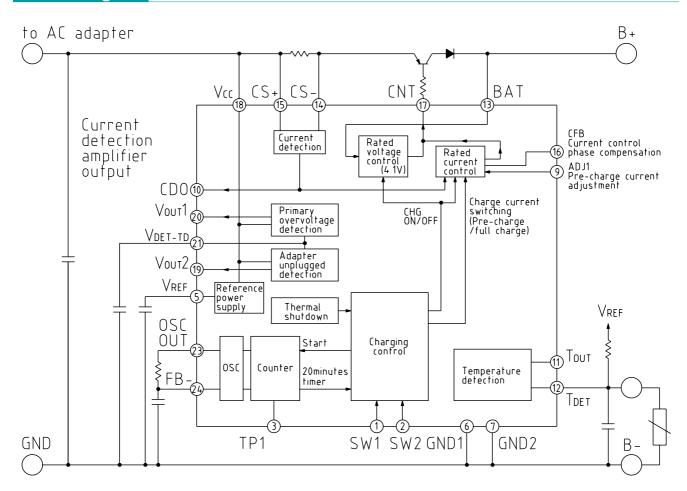
7. Pre-charge timer

±10% (not including external deviation)


Package

TSOP-24A

Applications


1. Lithium ion battery charging control (with timer)

Pin Assignment

1	SW1	13	BAT
2	SW2	14	CS-
3	TP1	15	CS+
4	N.C	16	CFB
5	VREF	17	CNT
6	GND1	18	Vcc
7	GND2	19	Vout2
8	N.C	20	Vout1
9	ADJ1	21	VDET-TD
10	CDO	22	N.C
11	Tout	23	OSC OUT
12	TDET	24	OSC FB-

Block Diagram

SW1	SW2	Charging	Current limit	Timer
L	Н	OFF		OFF
Н	Н	ON	Controlled by this IC (Current limit 2: 25mV)	ON
L	L	ON	Controlled by adaptor (Current limit 1: 450mV)	OFF
Н	L	ON	Controlled by adaptor (Current limit 1: 450mV)	OFF

Pin Description

Pin No.	Pin name	I/O Function	Function
1	SW1	Input	Charge control switching pin.
2	SW2	Input	Switches charging ON/OFF and switches charging current by combinations of SW1 and SW2 high and low.
3	TP1	Input/output	Test pin 1. Pre-charge timer test pin. Inverts during counting (from the middle stage of the several-staged FF) and outputs on TP1 for monitoring. Also inverts TP1 output signal again inside the IC and inputs to the next stage FF. (Timer setting done by binary counter.)
5	VREF	Output	Reference power supply output pin. Outputs 1.2V typ. reference voltage.
6	GND1	Input	Ground pin.
7	GND2	Input	Ground pin.
9	ADJ1	Input	Pre-charge current adjustment pin. Pin voltage is set at 100mV typ Pre-charge current can be changed by adjusting pin voltage with an external resistor. Pre-charge current is controlled by comparing ADJ1 pin voltage and the 12dB voltage drop value between CS + and CS –.
10	CDO	Output	Current detection output pin. Outputs voltage difference of 18dB between CS+ and CS –.
11	Тоит	Output	Temperature detection output pin. Normal temperature: Output Tr OFF When high temperature is detected: Output Tr ON
12	TDET	Input	Temperature detection input pin. Be sure to apply the potential obtained by resistance dividing, from reference voltage, with an external resistor and thermistor.
13	BAT	Input	Battery voltage input pin. Detects battery voltage and controls charging.
14	CS-	Input	Current detection pin.
15	CS+	Input	Detects current by voltage drop at external resistor between (CS+) and (CS–) and controls charging current.
16	CFB	Input	Rated current control phase compensation pin. Oscillation is improved by connecting an external capacitor (around 100pF) between CFB and CNT to perform phase compensation.
17	CNT	Output	Charging control output pin. Controls base of external PNP-Tr for rated current rated voltage charging.
18	Vcc	Input	Power supply input pin.
19	Vout2	Output	Adapter unplugged detection output pin. Vcc low voltage input: Output Tr OFF Vcc recommended operating voltage: Output Tr ON
20	Vour1	Output	Overvoltage detection output pin. Vcc overvoltage input: Output Tr OFF Vcc recommended operating voltage: Output Tr ON
21	VDET-TD	Input	Overvoltage detection delay time setting pin. Delay time is set by connecting an external capacitor.
23	OSC OUT	Output	Oscillator output pin. Timer setting time changes according to oscillation frequency. Oscillation frequency is determined by the external resistor (connected between OSC OUT and OSC FB) and capacitor (connected between OSC FB and GND).
24	OSC FB-	Input	Oscillator inverted input pin.

Pin No.	Pin name	Internal equivalent circuit diagram	Pin No.	Pin name	Internal equivalent circuit diagram
1	SW1	100k	11	Tour	
			12	TDET	
2	SW2	100k			
			13	BAT	
3	TP1				
			14	CS –	
4	NC		-		
5	VREF		15	CS +	
			16	CFB	
89	NC ADJ1	1.2V	_		
		\$ 16k	17	CNT	
10	CDO				
		60k	19	Vout2	

Pin Description The following valaeis typical

Pin name	Internal Equivalent Circuit Diagram	Pin No.	Pin name	Internal Equivalent Circuit Diagram
Vout1	\bigcirc	22	NC	
		23	OSC OUT	لر
	· · · · ·			
VDET-TD				Ø
	ļ			
		24	OSC FB -	
	230k			$\bigcirc \neg \zeta$
				•
	80k			<u>}</u>
				, , , , , , , , , , , , , , , , , , ,
	Vour1	Vour1 VDET-TD 230k 80k	Vour1 22 VDET-TD VCC 100k 24	Vour1 22 NC VDET-TD //// 23 OSC OUT 100k VCC 24 OSC FB- 230k 80k 80k 100k

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Rating	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	Vccmax.	-0.3~+15	V
Allowable loss	Pd	250	mW

Recommended Operating Conditions

Item	Symbol	Rating	Unit
Operating temperature	Topr	-20~+70	°C
Charging control operating voltage	Vopr	3.0~5.8	V

Electrical Characteristics (Except where otherwise indicated: Ta = 25°C, Vcc = 5V)

Item	Symbol	Measurement conditions	Measurement pin	Min.	Тур.	Max.	Unit
Consumption current 1	Icc1	SW1, 2 : H	18		3.5	5.0	mA
Consumption current 2	Icc2	SW1, 2 : L	18		5.5	7.7	mA
Reference voltage	VREF		5		1.207		V
ADP detection voltage L	VADPL	Vcc : H→L	19	2.70	2.80	2.90	V
ADP detection voltage L			10		100	150	
Hysteresis voltage width	VADPLW		19	50	100	150	mV
ADP detection voltage H	VADPH	Vcc : L→H	20	5.8	6.0	6.2	V
ADP detection voltage H	37		00	50	100	150	77
Hysteresis voltage width	VADPHW		20	50	100	150	mV
BAT pin leak current	Ibat		13			1	μA
BAT pin output voltage	VBAT	Ta=0~+50°C	13	4.090	4.120	4.150	V
CNT pin output voltage	VCNT	ICNT=20mA	17			0.5	V
SW1 pin input current	Isw1		1	40	60	80	μA
SW1 pin input voltage H	Vsw1H		1	0.6		1.20	V
SW1 pin input voltage L	Vsw1L		1			0.25	V
SW2 pin input current	Isw2		2	40	60	80	μA
SW2 pin input voltage H	Vsw2H		2	0.6		1.20	V
SW2 pin input voltage L	Vsw2L		2			0.25	V
Current limit 1	V _{L1}	Rapid Charging	14, 15	0.35	0.45	0.55	V
Current limit 2	V_{L2}	Preliminary Charging	14, 15	20	25	30	mV
Current detection amp gain	Gı		10	17.5	18.0	18.5	dB
Current detection amp input offset voltage	Voff		10	-4.5	0	4.5	mV
Current detection amp output current	Ісро		10	0.5	1.0		mA
Vouti pin output voltage	Vout1	Iout1=0.12mA	20		0.2	0.4	V
VOUT2 pin output voltage	Vout2	Iout2=0.12mA	19		0.2	0.4	V
Battery temperature	17			0.000	0.410	0.405	
detection voltage	VTDET	VTDET : $H \rightarrow L$	11	0.390	0.413	0.435	V
Battery temperature							
detection voltage	VTDETW		11	30	60	90	mV
hysteresis voltage width							
Tout pin output voltage	VTOUT	ITOUT=0.12mA	11		0.2	0.4	V
TDET input bias current	IT		12		30	150	nA
Timer error time	⊿T	Excluding Dispersion	17	-10		10	%

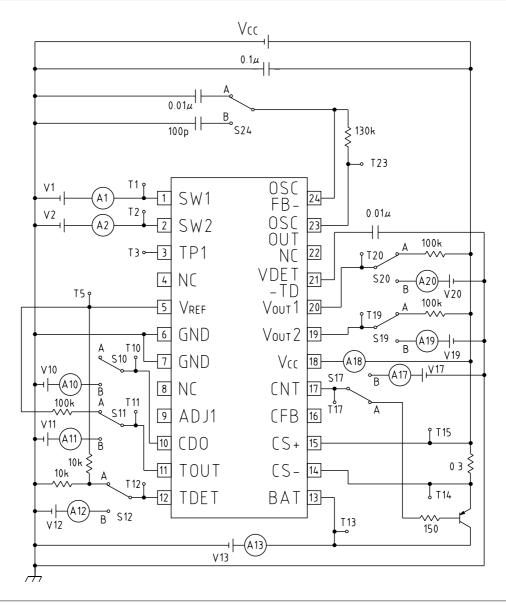
*Current limit 1 and 2 are prescribed by the current detection resistor voltage drop range.

*If the control on this IC fails to work, its safety can not be guaranteed. Please protect with something other than this IC.

*Please use a capacitor with good temperature characteristics in the OSC section. Capacitor deviation causes timer error.

Reference Materials on OSC CR Setting

(1) OSC CR – Oscillation cycle T Table

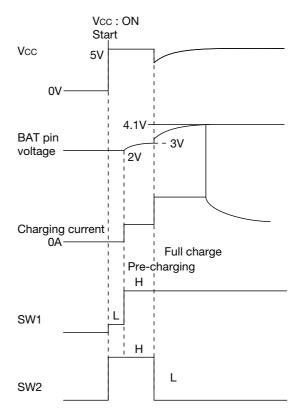

R C	75k	100k	120k	130k	150k	200k
0.0047µ	0.47ms	0.63ms	0.75ms	0.82ms	0.94ms	1.26ms
0.0082µ	0.83ms	1.10ms	1.32ms	1.43ms	1.65ms	2.20ms
0.01µ	1.03ms	1.37ms	1.63ms	1.77ms	2.04ms	2.73ms
0.015µ	1.48ms	1.98ms	2.38ms	2.58ms	2.97ms	3.95ms
0.022µ	2.16ms	2.87ms	3.44ms	3.73ms	4.30ms	5.76ms

(2) Timer Times

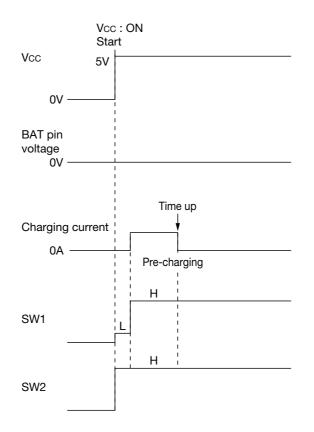
Item	Formula	Example (for C = 0.01μ , R = $130k$)
Pre-charge timer	$T \times 2^{19}$	15M28s

T: OSC oscillation cycle

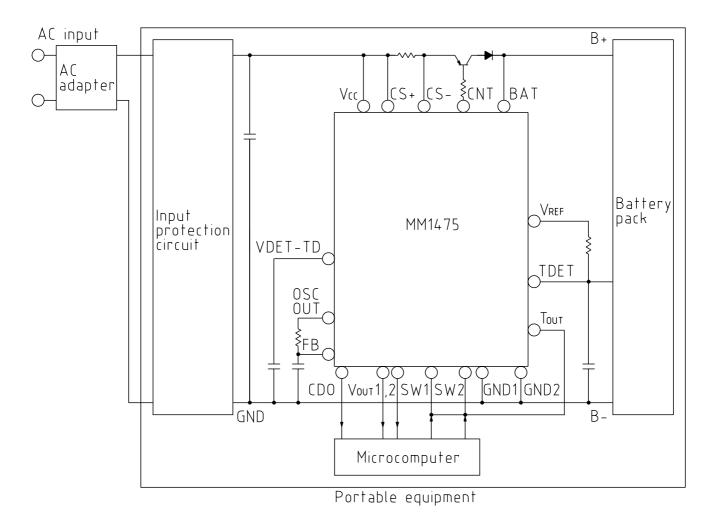
Measuring Circuit

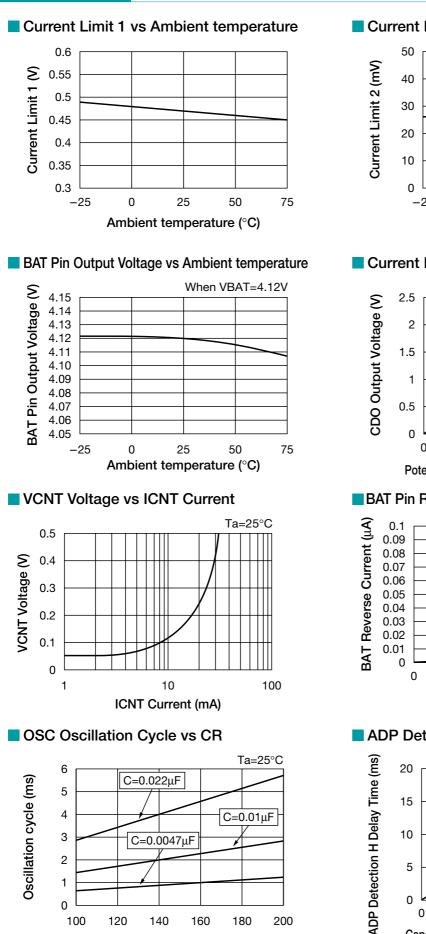


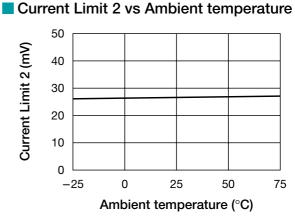
$\begin{array}{l} \mbox{Measurement method} \\ \mbox{(Except where otherwise indicated, Ta = 25°C, Vcc = 5V, Vcc : current limit 0.5A, } \\ \mbox{V1 = V2 = 0V, V13 = 4.2V, S10, 11, 12, 17, 19, 20, 24:A, timer time is not up)} \end{array}$

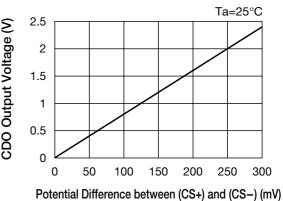

Item	Measurement method				
Consumption current 1	Measure A18 current value Icc1 when V1 = V2 = 1.2V.				
Consumption current 2	Measure A18 current value Icc2.				
Reference voltage	Measure T5 potential VREF.				
ADP detection voltage L	Gradually lower Vcc from 5V. Vcc potential when T19 potential goes over Vcc – 0.5V is VADPL.				
ADP detection voltage L	Gradually lower Vcc from 2V. Vcc potential when T19 potential drops below				
Hysteresis voltage width	0.5V is Vadpl2. Vadplw=Vadpl2-Vadpl				
ADP detection voltage H	Gradually raise Vcc from 5V. Vcc potential when T20 potential goes over Vcc – 0.5V is VADPH.				
ADP detection voltage H	Gradually lower Vcc from 7V. Vcc potential when T20 potential drops below				
Hysteresis voltage width	0.5V is Vadph2. Vadphw=Vadph-Vadph2				
BAT pin leak current	Measure A13 current value IBAT when VCC = 0V, S17: B, V17 = 0V.				
BAT pin output voltage	Gradually raise V13 from 3.5V. T13 potential when T15-T14 potential				
BAT pin output voltage	difference is 20mV or less is VBAT.				
CNT pin output voltage	Gradually raise V17 from 0V when V13 = 3.5V and S17: B. T17 potential when				
	A17 current value reaches 20mA is VCNT.				
SW1 pin input current	Measure A1 current value Isw1.				
SW1 pin input voltage H	Change V1 from 0V to 1.2V when V13 = 3.5V and V2 = 1.2V. To identify Vsw1 H				
	and L, when A13 is over 50mA, charging is ON at current limit 2, and when A13				
SW1 pin input voltage L	is 1mA or under, charging is OFF.				
SW2 pin input current	Measure A2 current value Isw2.				
SW2 pin input voltage H	Change V2 from 0V to 1.2V when V13 = 3.5V. To identify Vsw ₂ H and L, when A13 is over 450mA, charging is ON at current limit 1, and when A13 is 1mA or				
SW2 pin input voltage L	under, charging is OFF.				
Current limit 1	Gradually raise Vcc current limit value when V13 = 3.5V, and measure T15–T14 potential difference VL1.				
Current limit 2	$V13 = 2.5V$, $V1 = V2 = 1.2V$, and T15-T14 potential difference is V_{L2} .				
Current detection amp gain	T15-T14 potential difference fluctuation is \triangle Va and T10 potential fluctuation is \triangle Vb when V13 = 3.5V and Vcc current limit value is changed from 100mA to 200mA. G _I =20log $ \triangle$ Vb $/\triangle$ Va				
Current detection amp input offset voltage	T10 potential is Vb2 when V13 = 4.0V and Vcc current limit value is 100mA. VoFF=Vb2/8-30mV				
Current detection amp output current	Measure A10 current value when V13 = 3.5V, Vcc current limit value is 300mA, S10: B and V10 = 0V.				
Vour1 pin output voltage	Gradually raise V20 from 0V when S20: B. T20 potential when A20 current value is 0.12mA is VouT1.				
Vout2 pin output voltage	Gradually raise V19 from 0V when S19: B. V19 potential when A19 current value is 0.12mA is Vout2.				
Battery temperature					
detection voltage	potential falls below 0.3V.				
Battery temperature	At S12:B, lower gradually fromV12 = 0V. T12 potential is VIDET2 when T11				
detection voltage	potential goes above $0.8V$. VTDETW = VTDET2 – VTDET				
hysteresis voltage width					
Tout pin output voltage	Raise V11 gradually from 0V when S12:B, V12 = 0V, S11:B. T11 potential is				
	VTOUT when A11 current value is 0.12mA.				
TDET input bias current	Measure A12 current value IT for S12:B, V12 = 0V.				

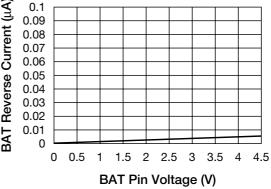
Timing Chart

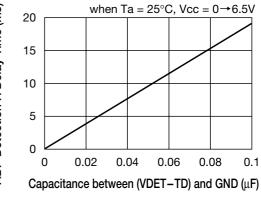

When charging is performed normally


Pre-Charging Time Up


Application Circuit


Characteristics


OSC Resistance R (kΩ)


Current Detection Input/Output

BAT Pin Reverse Current vs BAT Pin Voltage

