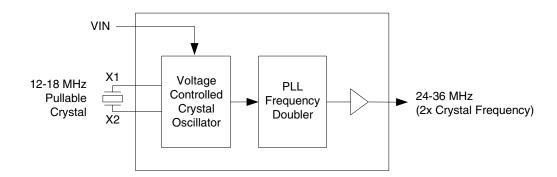
Low Cost 27 MHz 3.3 Volt VCXO

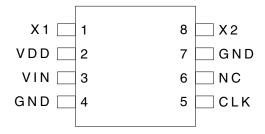
Description

The MK3727E combines the functions of a VCXO (Voltage Controlled Crystal Oscillator) and PLL (Phase Locked Loop) frequency doubler onto a single chip. Used in conjunction with an external pullable quartz crystal, this monolithic integrated circuit replaces more costly hybrid (canned) VCXO devices. The MK3727E is designed primarily for data and clock recovery applications within end products such as set-top box receivers.


The MK3727E exhibits a moderate VCXO gain of 120 ppm/V typical, when used with a high quality external pullable quartz crystal.

The frequency of the on-chip VCXO is adjusted by an external control voltage input into pin VIN. Because VIN is a high impedance input, it can be driven directly from an PWM RC integrator circuit. Frequency output increases with VIN voltage input. The usable range of VIN is 0 to 3 V.

Features


- MK3727E offers 24-36 MHz output frequency range (output frequency = 2x crystal frequency) and improved power supply noise rejection
- Uses an inexpensive 12 to 18 MHz external crystal
- Ideal for set-top box applications using 13.5 MHz external pullable crystal to generate lock 27 MHz clock transport video clock
- Ideal for ADSL applications using 17.664 MHz external pullable crystal to generate locked 35.328 MHz clock physical layer clock
- On-chip VCXO with guaranteed pull range of ±115 ppm minimum
- VCXO input tuning voltage 0 to 3.3 V
- Packaged in 8 pin SOIC (150 mil wide)
- Available in Pb (lead) free packaging
- Exact drop-in replacement for MK3727S

Block Diagram

Pin Assignment

MK3727E

8 Pin (150 mil) SOIC

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	ΧI	Input	Crystal connection. Connect to the external pullable crystal.
2	VDD	Power	Connect to +3.3 V (0.01uf decoupling capacitor recommended).
3	VIN	Input	Voltage input to VCXO 0 to 3.3 V analog input which controls the oscillation frequency of the VCXO.
4	GND	Power	Connect to ground.
5	CLK	Output	Clock output.
6	NC	_	No internal connection (may connect to ground or VDD).
7	GND	Power	Connect to ground.
8	X2	Input	Crystal connection. Connect to the external pullable crystal.

External Component Selection

The MK3727E requires a minimum number of external components for proper operation.

Decoupling Capacitor

A decoupling capacitor of 0.01µF must be connected between VDD (pin 2) and GND (pin 4), as close to these pins as possible. For optimum device performance, the decoupling capacitor should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB trace between the clock output (CLK, pin 5) and the load is over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω .

Quartz Crystal

The MK3727E VCXO function consists of the external crystal and the integrated VCXO oscillator circuit. To assure the best system performance (frequency pull range) and reliability, a crystal device with the recommended parameters (shown below) must be used, and the layout guidelines discussed in the following section shown must be followed.

The frequency of oscillation of a quartz crystal is determined by its "cut" and by the load capacitors connected to it. The MK3727E incorporates on-chip variable load capacitors that "pull" (change) the frequency of the crystal. The crystal specified for use with the MK3727E is designed to have zero frequency error when the total of on-chip + stray capacitance is 14pF.

Recommended Crystal Parameters:

Initial Accuracy at 25°C	±20 ppm
Temperature Stability	±30 ppm
Aging	±20 ppm
Load Capacitance	14 pf

Shunt Capacitance, C0 7 pF Max C0/C1 Ratio 250 Max Equivalent Series Resistance 35 Ω Max

The third overtone mode of the crystal and all spurs must be >100 ppm distant from 3x the fundamental resonance measured with a physical load of 14 pF.

The external crystal must be connected as close to the chip as possible and should be on the same side of the PCB as the MK3727E. There should be no vias between the crystal pins and the X1 and X2 device pins. There should be no signal traces underneath or close to the crystal.

Crystals can be made to resonate either at the fundamental frequency, or on the third, fifth, or even higher overtone. VCXO crystals are always fundamental mode, because overtone modes are much less pullable and require additional oscillator circuitry for proper operation.

The third overtone mode is not necessarily at exactly three times the fundamental frequency. The mechanical properties of the quartz element dictate the position of the overtones relative to the fundamental, and in a VCXO circuit, the third overtone is not typically exactly three times the fundamental, or the oscillator circuit may excite both the fundamental and overtone modes simultaneously. This will cause a nonlinearity in the transfer curve such as the one in Figure 3. This potential problem is why VCXO crystals are required to be tested for absence of any activity inside a +/-100 ppm window at three times the fundamental frequency.

Crystal Tuning Load Capacitors

The crystal traces should include pads for small fixed capacitors, one between X1 and ground, and another between X2 and ground. Stuffing of these capacitors on the PCB is optional. The need for these capacitors is determined at system prototype evaluation, and is influenced by the particular crystal used (manufacture and frequency) and by PCB layout. The typical required capacitor value is 1 to 4 pF.

The procedure for determining the value of these capacitors can be found in application note MAN05.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the MK3727E. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
All Inputs and Outputs	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	0 to +70°C
Storage Temperature	-65 to +150°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	0		+70	°C
Power Supply Voltage (measured in respect to GND)	+3.15		+3.45	V
Reference crystal parameters		Refer to	page 3	

MDS 3727E D 4 Revision 042105

DC Electrical Characteristics

VDD=3.3 V ±5%, Ambient temperature 0 to +70°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.15		3.45	V
Output High Voltage	V _{OH}	I _{OH} = -12 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 12 mA			0.4	V
Output High Voltage (CMOS Level)	V _{OH}	I _{OH} = -4 mA	VDD-0.4			V
Operating Supply Current	IDD	Output = 27 MHz, no load		10		mA
Short Circuit Current	Ios			±50		mA
VIN, VCXO Control Voltage	V _{IA}		0		3.3	V

AC Electrical Characteristics

VDD = 3.3 V \pm5%, Ambient Temperature 0 to $+70^{\circ}$ C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Frequency	F _O	VCXO Crystal frequency = 1/2 Output	24		36	MHz
Crystal Pullability	F _P	0V≤ VIN ≤ 3.3 V, Note 1	<u>+</u> 115			ppm
VCXO Gain		VIN = VDD/2 ± 1 V, Note 1		120		ppm/V
Output Rise Time	t _{OR}	0.8 to 2.0 V, C _L =15 pF			1.5	ns
Output Fall Time	t _{OF}	2.0 to 0.8 V, C _L =15 pF			1.5	ns
Output Clock Duty Cycle	t _D	Measured at 1.4 V, C _L =15 pF	40	50	60	%
Maximum Output Jitter, short term	t _J	C _L =15 pF		100		ps

Note 1: External crystal device must conform with Pullable Crystal Specifications listed on page 3.

Inches

0.050 Basic

Max

0.0688

0.0098

0.020

0.0098

.1968

0.1574

0.2440

0.020

0.050

8°

Min

0.0532

0.0040

0.013

0.0075

.1890

0.1497

0.2284

0.010

0.016

0°

Millimeters

1.27 Basic

0°

Max

1.75

0.25

0.51

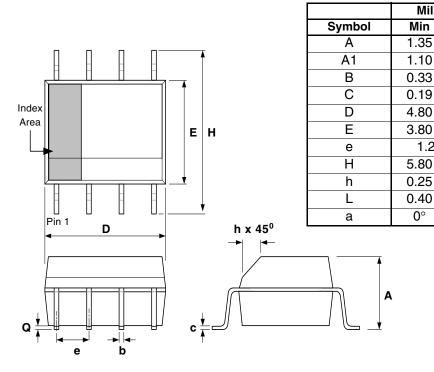
0.25

5.00

4.00

6.20

0.50


1.27

8°

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
MK3727E	MK3727E	Tubes	8-pin SOIC	0 to +70° C
MK3727ETR	MK3727E	Tape and Reel	8-pin SOIC	0 to +70° C
MK3727ELF	MK3727EL	Tubes	8-pin SOIC	0 to +70° C
MK3727ELFTR	MK3727EL	Tape and Reel	8-pin SOIC	0 to +70° C

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.