Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1. 2. 1.
- HD-4702/883 Provides 13 Commonly Used Bit Rates
- Uses a 2.4576MHz Crystal/Input for Standard Frequency Output (16 Times Bit Rate)
- Low Power Dissipation
- Conforms to EIA RS-404
- One HD-4702/883 Controls up to Eight Transmission Channels
- Initialization Circuit Facilitates Diagnostic Fault Isolation
- On-Chip Input Pull-Up Circuit

Ordering Information

PART NUMBER	TEMPERATURE RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HD1-4702/883	-55 to 125	CERDIP	F 16.3

Description

The HD-4702/883 Bit Rate Generator provides the necessary clock signals for digital data transmission systems, such as a UART. It generates 13 commonly used bit rates using an on-chip crystal oscillator or an external input. For conventional operation generating 16 output clock pulses per bit period, the input clock frequency must be 2.4576 MHz (i.e., 9600 Baud x 16×16, since there is an internal $\div 16$ prescaler). A lower input frequency will result in a proportionally lower output frequency.

The HD-4702/883 can provide multi-channel operation with a minimum of external logic by having the clock frequency C_{O} and the $\div 8$ prescaler outputs $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}$ available externally. All signals have a 50% duty cycle except 1800 Baud, which has less than 0.39% distortion.

The four rate select inputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ select which bit rate is at the output (Z). See Truth Table for Rate Select Inputs for select code and output bit rate. Two of the 16 select codes for the HD-4702/883 do not select an internally generated frequency, but select an input into which the user can feed either a different frequency, or a static level (High or Low) to generate "ZERO BAUD".

The bit rates most commonly used in modern data terminals (110,150, 300,1200, 2400 Baud) require that no more than one input be grounded for the HD-4702/883, which is easily achieved with a single 5-position switch.

The HD-4702/883 has an initialization circuit which generates a master reset for the scan counter. This signal is derived from a digital differentiator that senses the first high level on the C_{P} input after the $\bar{E}_{C P}$ input goes low. When $\bar{E}_{C P}$ is high, selecting the crystal input, C_{P} must be low. A high level on C_{P} would apply a continuous reset. See Clock Modes and Initialization below.

Pinout

HD-4702/883 (CERDIP)
TOP VIEW

Truth Table

TRUTH TABLE FOR RATE SELECT INPUTS
(Using 2.4576MHz Crystal)

S $_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	OUTPUT RATE (Z)
L	L	L	L	MUX Input (lM)
L	L	L	H	MUX Input (lM)
L	L	H	L	50 Baud
L	L	H	H	75 Baud
L	H	L	L	134.5 Baud
L	H	L	H	200 Baud
L	H	H	L	600 Baud
L	H	H	H	2400 Baud
H	L	L	L	9600 Baud
H	L	L	H	4800 Baud
H	L	H	L	1800 Baud
H	L	H	H	1200 Baud
H	H	L	L	2400 Baud
H	H	L	H	300 Baud
H	H	H	L	150 Baud
H	H	H	H	110 Baud

NOTE:

1. 19200 Baud by connecting Q_{2} to I_{M}.

CLOCK MODES AND INITIALIZATION

$\mathrm{I}_{\mathbf{X}}$	$\mathrm{E}_{\mathbf{C P}}$	$\mathbf{C}_{\mathbf{P}}$	OPERATION
$几 \mathrm{~L}$	H	L	Clocked from I_{X}
X	L	$\nearrow 几$	Clocked from $\mathrm{C}_{\mathbf{P}}$
X	H	H	Continuous Reset
X	L	\boxed{L}	Reset During First C_{P} = High Time

NOTE:
2. Actual output frequency is 16 times the indicated output rate, assuming a clock frequency of 2.4576 MHz .

H	$=$ HIGH Level
L	$=$ LOW Level
X	$=$ Don't Care
$\boxed{\boxed{ }}$	$=$ Clock Pulse
$\boxed{\square}$	$=$ First HIGH Level Clock Pulse after $\bar{E}_{\text {CP }}$ goes LOW

Absolute Maximum Ratings

Supply Voltage . 8.0 V
Input, Output or I/O Voltage GND -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
ESD Classification . Class 1
Typical Derating Factor. 1mA/MHz Increase in ICCOP
Operating Conditions
Operating Voltage Range . .
+4.5 V to +5.5 V
Operating Temperature Range
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Die Characteristics

Gate Count
720 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS
Device Guaranteed and 100\% Tested

DC PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	MIN	MAX	UNITS
Input High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	$\mathrm{V}_{\text {CC }} 70 \%$	-	V
Input Low Voltage	V_{IL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	$V_{\text {cc }} 30 \%$	V
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}} \leq-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \text { (Note 4) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	$\mathrm{V}_{\text {CC }}-0.1$	-	V
Output Low Voltage	$\mathrm{V}_{\text {OL1 }}$	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}} \leq+1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=45 \mathrm{~V}, \\ & \text { (Note 4) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	0.1	V
Input High Current	IIH	$\begin{aligned} & V_{I N}=V_{C C} . \text { All Other Pins }=0 \mathrm{~V}, \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-1	+1	$\mu \mathrm{A}$
Input Low Current (IX Input)	IILX	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { All Other Pins }=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-1	+1	$\mu \mathrm{A}$
Input Low Current (All Other Inputs)	IIL	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { All Other Pins }=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note 5) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	-100	$\mu \mathrm{A}$
Output High Current (OX)	IOHX	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}-0.5, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Input at 0 V or V_{CC} per Logic Function or Truth Table	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-0.1	-	mA
Output High Current (All Other Outputs)	${ }^{\mathrm{I}} \mathrm{OH} 1$	$\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Input at OV or V_{CC} per Logic Function or Truth Table	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-1.0	-	mA
Output High Current (All Other Outputs)	${ }^{\mathrm{I}} \mathrm{OH} 2$	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}-0.5, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Input at OV or V_{CC} per Logic Function or Truth Table	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-0.3	-	mA
Output Low Current (OX)	Iolx	$\mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Input at OV or V_{CC} per Logic Function or Truth Table	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	0.1	-	mA
Output Low Current (All Other Outputs)	l OL	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ Input at 0 V or V_{CC} per Logic Function or Truth Table	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	1.6	-	mA

TABLE 1. DC ELECTRICAL PERFORMANCE SPECIFICATIONS (Continued)

Device Guaranteed and 100\% Tested

DC PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	MIN	MAX	UNITS
Supply Current (Static)	ICC	$\begin{aligned} & \text { ECP }=\mathrm{V}_{\mathrm{CC}}, \mathrm{CP}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { All Other Inputs }=\mathrm{GND}, \\ & \text { (Note 5) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	1500	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{E} C P=\mathrm{V}_{\mathrm{CC}}, \mathrm{CP}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { All Other Inputs }=\mathrm{V}_{\mathrm{CC}} \\ & \text { (Note 5) } \end{aligned}$	1, 2, 3	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	1000	$\mu \mathrm{A}$

NOTES:
4. Interchanging of force and sense conditions is permitted.
5. Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull-up circuits on all inputs except I_{X}.

TABLE 2. AC ELECTRICAL PERFORMANCE SPECIFICATIONS
Device Guaranteed and 100\% Tested.

AC PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	MIN	MAX	UNITS
Propagation Delay, I_{X} to C_{O}	${ }_{\text {tPLH }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}} \leq 7 \mathrm{pF} \text { on } \mathrm{OX} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Note 6) } \end{aligned}$	9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	350	ns
Propagation Delay, IX_{X} to C_{O}	tpHL		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	275	ns
Propagation Delay, CP_{P} to C_{O}	tpLH		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	260	ns
Propagation Delay, C_{P} to C_{O}	$\mathrm{t}_{\text {PHL }}$		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	220	ns
Propagation Delay, C_{O} to Q_{n}	${ }_{\text {tPLH }}$		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	(Note 7)	ns
Propagation Delay, C_{O} to Qn	$\mathrm{t}_{\text {PHL }}$		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	(Note 7)	ns
Propagation Delay, C_{O} to Z	$t_{\text {PLH }}$		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	85	ns
Propagation Delay, C_{O} to Z	$t_{\text {PHL }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	75	ns
Output Transition Time (Except Ox)	${ }^{\text {t }}$ LLH		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$		160	ns
Output Transition Time (Except $\mathrm{O}_{\text {x }}$)	${ }_{\text {t }}^{\text {THL }}$		9, 10, 11	$-55 \leq T_{A} \leq 125$	-	75	ns
Set-UpTime Select to C_{O}	ts		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	350	-	ns
Hold Time, Select to C_{O}	tH_{H}		9, 10, 11	$-55 \leq T_{A} \leq 125$	0	-	ns
Set-UpTime, I_{M} to C_{O}	ts		9, 10, 11	$-55 \leq T_{A} \leq 125$	350	-	ns
Hold Time, I_{M} to C_{O}	t_{H}		9, 10, 11	$-55 \leq T_{A} \leq 125$	0	-	ns
Minimum Clock Pulse Width, Low (Notes 8, 9)	${ }^{\text {tw }}$ WP(L)		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	120		ns
Minimum Clock Pulse Width, High (Notes 8, 9)	${ }^{\text {twCP(H) }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	120	-	ns
Minimum IX Pulse Width, Low (Note 9)	${ }^{\text {tw }}$ WCP(L)		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	160	-	ns
Minimum IX Pulse Width, High (Note 9)	${ }^{\text {twCP(}}$ (${ }^{\text {P }}$		9, 10, 11	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	160	-	ns

NOTES:
6. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-Up Times (t_{S}), Hold Times (t_{H}), and Minimum Pulse Widths (t_{W}) do not vary with load capacitance.
7. For multichannel operation, Propagation Delay (C_{O} to Q_{n}), plus Set-Up Time, Select to C_{O}, is guaranteed to be $\leq 367 \mathrm{~ns}$.
8. The first High Level Clock Pulse alter $\bar{E}_{C P}$ goes Low must be at least 350 ns long to guarantee reset of all Counters.
9. It is recommended that input rise and fall times to the clock inputs $\left(C_{P}, I_{X}\right)$ be less than 15 ns .

HD-4702/883

TABLE 3. ELECTRICAL PERFORMANCE SPECIFICATIONS

AC PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE (${ }^{\circ} \mathrm{C}$)	MIN	MAX	UNITS
Input Capacitance	$\mathrm{ClN}_{\mathrm{IN}}$	All Measurements are referenced to device ground, $\mathrm{f}=1 \mathrm{MHz}$.	10	$\mathrm{T}_{\mathrm{A}}=25$	-	7.0	pF
Output Capacitance	C_{0}		10	$\mathrm{T}_{\mathrm{A}}=25$	-	15.0	pF
	tpLH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}} \leq 7 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	300	ns
Propagation Delay I_{X} to C_{O}	$t_{\text {PHL }}$		10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	250	ns
Propagation Delay C_{P} to C_{O}	tPLH		10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	215	ns
Propagation Delay C_{P} to C_{O}	$\mathrm{t}_{\text {PHL }}$		10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	195	ns
Propagation Delay C_{0} to Q_{n}	tpLH		10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	(Note 11)	ns
Propagation Delay C_{O} to Q_{n}	$\mathrm{t}_{\text {PHL }}$		10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	(Note 11)	ns
Propagation Delay C_{O} to Z	$\mathrm{t}_{\text {PLH }}$		10, 12	$-55 \leq T_{A} \leq 125$	-	75	ns
Propagation Delay C_{O} to Z	$\mathrm{t}_{\text {PHL }}$		10, 12	$-55 \leq T_{A} \leq 125$	-	65	ns
Output Transition Time (Except ${ }^{\text {Ox }}$)	$\mathrm{t}_{\text {TLH }}$		10, 12	$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125$	-	80	ns
Output Transition Time (Except Ox)	${ }_{\text {t }}^{\text {THL }}$		10, 12	$-55 \leq T_{A} \leq 125$	-	40	ns

NOTES:
10. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
11. For multichannel operation, Propagation Delay (C_{O} to $Q n$) plus Set-Up Time, Select to C_{O}, is guaranteed to be $\leq 367 \mathrm{~ns}$.
12. Propagation Delays ($t_{P L H}$ and $t_{P H L}$) and Output Transition Times ($t_{T L H}$ and $t_{T H L}$) will change with Output Load Capacitance (C_{L}). Set-Up Times (t_{S}), Hold Times (t_{H}), and Minimum Pulse Widths (t_{W}) do not vary with load capacitance.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	$1,7,9$
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C and D	Samples/5005	$1,7,9$

HD-4702/883

Burn-In Circuit

NOTES:

13. $\mathrm{F} 0=100 \mathrm{kHz} \pm 10 \%, \mathrm{~F} 1=\mathrm{F} 0 / 2, \mathrm{~F} 2=\mathrm{F} 1 / 2 ., \ldots$
14. $R_{1}=10 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}, \pm 10 \%$.
15. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$.
16. $C_{1}=0.01 \mu \mathrm{~F}$ Min.

Die Characteristics

DIE DIMENSIONS:
100 mils $\times 97$ mils $\times 19$ mils
METALLIZATION:
Type: Si - AI
Thickness: 10kÅ-12kÅ

GLASSIVATION:

Type: SiO_{2}
Thickness: 7kÅ-9kÅ
WORST CASE CURRENT DENSITY:
$7.1 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$, and $\mathrm{N} / 2+1$) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension Q shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M-1982.
10. Controlling dimension: INCH .

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

