
DISCRETE SEMICONDUCTORS

DATA SHEET

BGY120A; BGY120BUHF amplifier modules

Objective specification

1997 Nov 11

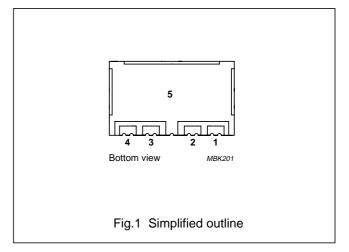
UHF amplifier modules

BGY120A; BGY120B

FEATURES

- Single 3.5 V nominal supply voltage
- 1 W output power
- Easy control of output power by DC voltage
- Very high efficiency (typ. 60%)
- Silicon bipolar technology
- Standby current less than 10 μA.

APPLICATIONS


 Hand-held transmitting equipment operating in the 824 to 849 MHz and 872 to 905 MHz frequency ranges.

DESCRIPTION

The BGY120A and BGY120B are two-stage UHF amplifier modules in a SOT482B package with plastic cover. Each module consists of two NPN silicon planar transistor dies mounted together with a matching and bias circuit components on a metallized ceramic substrate. These modules produce an output power of 1 W into a load of 50 Ω with an RF drive power of 5 mW.

PINNING - SOT482B

PIN	DESCRIPTION		
1	RF input		
2	V _C		
3	V _S		
4	RF output		
5	flange connected to ground		

QUICK REFERENCE DATA

RF performance at $T_{mb} = 25$ °C.

TYPE	MODE OF OPERATION	f (MHz)	V _S (V)	P _L (W)	G _p (dB)	η (%)	Z _S ; Z _L (Ω)
BGY120A	CW	824 to 849	3.5	1	≥23	typ. 60	50
BGY120B	CW	872 to 905	3.5	1	≥23	typ. 60	50

UHF amplifier modules

BGY120A; BGY120B

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
Vs	DC supply voltage	_	5	V
V _C	DC control voltage	_	2.9	٧
P _D	input drive power	_	10	mW
PL	load power	_	1.4	W
T _{stg}	storage temperature	-40	+100	°C
T _{mb}	operating mounting-base temperature	-30	+100	°C

CHARACTERISTICS

 $Z_S = Z_L = 50~\Omega;~P_D = 5~mW;~V_S = 3.5~V;~V_C \leq 2.5~V;~T_{mb} = 25~^{\circ}C;~unless~otherwise~specified.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f	frequency range					
	BGY120A		824	_	849	MHz
	BGY120B		872	_	905	MHz
IQ	total leakage current	$V_C = 0.3 \text{ V}; P_D < -60 \text{ dBm}$	_	_	10	μΑ
I _C	control current		_	_	10	mA
P_{L}	load power	V _C = 2.5 V	1	_	_	W
		$V_S = 3.2 \text{ V}; T_{mb} = 85 ^{\circ}\text{C}$	0.71	_	_	W
G _p	power gain	adjust V _C for P _L = 1 W	23	_	_	dB
η	efficiency	$V_S = 3.2 \text{ V};$ adjust V_C for $P_L = 0.9 \text{ W}$	55	60	_	%
H ₂	second harmonic	adjust V _C for P _L = 0.9 W	_	_	-35	dBc
H ₃	third harmonic	adjust V _C for P _L = 0.9 W	Ī-	_	-40	dBc
VSWR _{in}	input VSWR	adjust V _C for P _L = 0.9 W	Ī-	_	2:1	
		$V_C \le 0.5 \text{ V}$	_	_	4:1	
	stability	$P_L \le 1.4 \text{ W}; V_C = 0 \text{ to } 2.9 \text{ V}; \\ V_S = 2.8 \text{ to } 5 \text{ V}; P_D = 4 \text{ to } 10 \text{ dBm}; \\ VSWR \le 6 : 1 \text{ through all phases}$	_	-	-60	dBc
	isolation	V _C ≤ 0.5 V	Ī-	-40	_	dBm
P _n	noise power	adjust V_C for $P_L = 1$ W; bandwidth = 30 kHz; $f_n = f_o + 45$ MHz	_	-	-90	dBm
d _{im}	reverse intermodulation	$P_{Tx} = 0.9 \text{ W}; f_{int} = f_{Tx} - 45 \text{ MHz}; P_{int} = P_{Tx} - 30 \text{ dB}; \text{ note 1}$	_	_	-8	dB
	ruggedness	$V_S = 5 \text{ V};$ adjust V_C for $P_L = 1.4 \text{ W};$ $VSWR \le 10 : 1 \text{ through all phases}$	no degra	adation		

Note

1. With respect to Pint.

UHF amplifier modules

BGY120A; BGY120B

PACKAGE OUTLINE

PACKAGE
OUTLINE
NOT
RELEASED
FOR
GENERAL
PUBLICATION

UHF amplifier modules

BGY120A; BGY120B

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

1997 Nov 11 5

UHF amplifier modules

BGY120A; BGY120B

NOTES

UHF amplifier modules

BGY120A; BGY120B

NOTES