Single D-type flip-flop with reset; positive-edge trigger
Rev. 01 - 18 October 2004 Product data sheet


## 1. General description

The 74LVC1G175 is a high-performance, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The input can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using $\mathrm{I}_{\text {off }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74LVC1G175 is a single positive edge triggered D-type flip-flop with individual data (D) input, clock (CP) input, master reset ( $\overline{\mathrm{MR}}$ ) input, and Q output.

The master reset $(\overline{\mathrm{MR}})$ is an asynchronous active LOW input and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

Schmitt-trigger action at all inputs makes the circuit highly tolerant to slower input rise and fall times.

## 2. Features

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant inputs for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
- JESD8-7 (1.65 V to 1.95 V)
- JESD8-5 (2.3 V to 2.7 V )
- JESD8B/JESD36 (2.7 V to 3.6 V).

■ $\pm 24 \mathrm{~mA}$ output drive $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$

- ESD protection:
- HBM EIA/JESD22-A114-B exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V.
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.


## 3. Quick reference data

Table 1: Quick reference data
$G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f} \leq 2.5 \mathrm{~ns}$.

| Symbol | Parameter | Conditions |  | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay CP to Q | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |  | 1.0 | 3.1 | 5.7 | ns |
|  | propagation delay $\overline{\mathrm{MR}}$ to Q | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |  | 1.0 | 2.5 | 5.8 | ns |
| $\mathrm{f}_{\text {max }}$ | maximum clock frequency | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ |  | 175 | 300 | - | MHz |
| $\mathrm{C}_{1}$ | input capacitance |  |  | - | 2.5 | - | pF |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | [1] [2] | - | 14 | - | pF |

[1] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
[2] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$.

## 4. Ordering information

Table 2: Ordering information

| Type number | Package |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Temperature range | Name | Description | Version |
| 74LVC1G175GW | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SC-88 | plastic surface mounted package; 6 leads | SOT363 |
| 74LVC1G175GV | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SC-74 | plastic surface mounted package; 6 leads | SOT457 |
| 74LVC1G175GM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5 \mathrm{~mm}$ | SOT886 |

## 5. Functional diagram



Fig 1. Logic symbol.


Fig 2. IEC logic symbol.


## 6. Pinning information

### 6.1 Pinning



Fig 4. Pin configuration SC-88 and SC-74.


Transparent top view
Fig 5. Pin configuration XSON6.

### 6.2 Pin description

Table 3: Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| CP | 1 | clock input (LOW-to-HIGH, edge-triggered) |
| GND | 2 | ground (0 V) |
| $D$ | 3 | data input |
| Q | 4 | flip-flop output |
| $V_{C C}$ | 5 | supply voltage |
| $\overline{M R}$ | 6 | master reset input (active LOW) |

## 7. Functional description

### 7.1 Function table

Table 4: Function table [1]

| Operating mode | Input |  | Output |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\overline{\mathbf{M R}}$ | $\mathbf{C P}$ | $\mathbf{D}$ | Q |
| Reset (clear) | L | X | X | L |
| Load '1' | H | $\uparrow$ | h | H |
| Load '0' | H | $\uparrow$ | I | L |

[1] $\mathrm{H}=$ HIGH voltage level;
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;
$\uparrow=$ LOW-to-HIGH CP transition;
X = don't care.

## 8. Limiting values

Table 5: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | supply voltage |  | -0.5 | +6.5 | V |
| 1 IK | input diode current | $\mathrm{V}_{1}<0 \mathrm{~V}$ | - | -50 | mA |
| $\mathrm{V}_{1}$ | input voltage |  | [1] -0.5 | +6.5 | V |
| lok | output diode current | $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$ | - | $\pm 50$ | mA |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage | active mode | [1] [2] -0.5 | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
|  |  | Power-down mode | [1] [2] -0.5 | +6.5 | V |
| 10 | output diode current | $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ | - | $\pm 50$ | mA |
| $\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$ | $\mathrm{V}_{\text {CC }}$ or GND current |  | - | $\pm 100$ | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\text {tot }}$ | power dissipation | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | - | 250 | mW |

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

## 9. Recommended operating conditions

Table 6: Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | 1.65 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | input voltage |  | 0 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | output voltage | active mode | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
|  |  | Power-down mode $; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | 0 | 5.5 | V |

Single D-type flip-flop with reset; positive-edge trigger

Table 6: Recommended operating conditions ...continued

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{\text {amb }}$ | ambient temperature |  | -40 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | input rise and fall times | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V | 0 | 20 | $\mathrm{~ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V | 0 | 10 | $\mathrm{~ns} / \mathrm{V}$ |

## 10. Static characteristics

Table 7: Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | $0.65 \times \mathrm{V}_{\text {cC }}$ | - | - | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | $0.7 \times \mathrm{V}_{\text {cc }}$ | - | - | V |
| $\mathrm{V}_{\mathrm{IL}}$ | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | - | $0.35 \times \mathrm{V}_{\text {CC }}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V | - | - | 0.8 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | - | $0.3 \times \mathrm{V}_{\text {cc }}$ | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} ; \mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 5.5 V | $\mathrm{V}_{C C}-0.1$ | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{C C}=1.65 \mathrm{~V}$ | 1.2 | 1.54 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.9 | 2.15 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-12 \mathrm{~mA} ; \mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 2.2 | 2.50 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.3 | 2.62 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.8 | 4.11 | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V | - | - | 0.10 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | 0.07 | 0.45 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | 0.12 | 0.30 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | 0.17 | 0.40 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | 0.33 | 0.55 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 0.39 | 0.55 | V |
| $\mathrm{I}_{\mathrm{LI}}$ | input leakage current | $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | $\pm 0.1$ | $\pm 5$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {ff }}$ | power OFF leakage current | $\mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | $\pm 0.1$ | $\pm 10$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | 0.1 | 10 | $\mu \mathrm{A}$ |
| $\Delta l_{\text {CC }}$ | additional quiescent supply current per pin | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$ | - | 5 | 500 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1}$ | input capacitance |  | - | 2.5 | - | pF |

Table 7: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | $0.65 \times \mathrm{V}_{\text {cC }}$ | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | - | - | V |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | $0.7 \times \mathrm{V}_{\text {CC }}$ | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | - | - | $0.35 \times V_{\text {CC }}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V | - | - | 0.8 | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | - | - | $0.3 \times \mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=-100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V | $\mathrm{V}_{C C}-0.1$ | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{C C}=1.65 \mathrm{~V}$ | 0.95 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | 1.7 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 1.9 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.0 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.4 | - | - | V |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V | - | - | 0.10 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | - | 0.70 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | - | 0.45 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ | - | - | 0.60 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ | - | - | 0.80 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ | - | - | 0.80 | V |
| $\mathrm{ILI}^{\prime}$ | input leakage current | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | - | $\pm 20$ | $\mu \mathrm{A}$ |
| loff | power OFF leakage current | $\mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ | - | - | $\pm 20$ | $\mu \mathrm{A}$ |
| $I_{\text {cc }}$ | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | - | 40 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {CC }}$ | additional quiescent supply current per pin | $\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$ | - | - | 5000 | $\mu \mathrm{A}$ |

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

## 11. Dynamic characteristics

Table 8: Dynamic characteristics $G N D=0 \mathrm{~V}$; see Figure 8

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$ |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay CP to Q | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.5 | 4.9 | 13.4 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | 3.1 | 7.1 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.0 | 3.2 | 7.1 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 1.0 | 3.1 | 5.7 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | 2.2 | 4.0 | ns |
|  | propagation delay $\overline{\mathrm{MR}}$ to Q | see Figure 7 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.5 | 4.3 | 12.9 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | 2.8 | 7.0 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.0 | 3.0 | 7.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 1.0 | 2.5 | 5.8 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | 2.0 | 4.1 | ns |
| tw | clock pulse width HIGH or LOW | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 6.2 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 2.7 | 1.3 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | - | - | ns |
|  | master reset pulse width LOW | see Figure 7 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 6.2 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 2.7 | 1.6 | - | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | - | - | ns |
| $\mathrm{trem}^{\text {m }}$ | removal time master reset | see Figure 7 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 1.9 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | 1.4 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 1.3 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 1.2 | 0.4 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | - | - | ns |
| $\mathrm{t}_{\text {su }}$ | set-up time D to CP | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 2.9 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 1.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 1.3 | 0.5 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.1 | - | - | ns |

Table 8: Dynamic characteristics ...continued
$G N D=0 \mathrm{~V}$; see Figure 8

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{n}$ | hold time D to CP | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 0.0 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 0.3 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 0.5 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 1.2 | 0.2 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 0.5 | - | - | ns |
| $\mathrm{f}_{\text {max }}$ | maximum clock pulse frequency | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 80 | 125 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 175 | - | - | MHz |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 175 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [2] 175 | 300 | - | MHz |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | 200 | - | - | MHz |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | [3] [4] - | 14 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay CP to Q | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.5 | - | 17 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | - | 9.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 1.0 | - | 9.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 0.5 | - | 7.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 0.5 | - | 5.5 | ns |
|  | propagation delay $\overline{\mathrm{MR}}$ to Q | see Figure 7 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.5 | - | 17 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | - | 9.0 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.0 | - | 9.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 0.5 | - | 7.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 0.5 | - | 5.5 | ns |
| tw | clock pulse width HIGH or LOW | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 6.2 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | - | - | ns |
|  | master reset pulse width LOW | see Figure 7 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 6.2 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 2.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | - | - | ns |

Table 8: Dynamic characteristics ...continued
$G N D=0 \mathrm{~V}$; see Figure 8

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| trem | removal time master reset | see Figure 7 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 1.9 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.4 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 1.3 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.2 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | - | - | ns |
| $\mathrm{t}_{\text {su }}$ | set-up time D to CP | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 2.9 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.7 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.3 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.1 | - | - | ns |
| $t_{n}$ | hold time D to CP | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 0.0 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 0.3 | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 0.5 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.2 | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 0.5 | - | - | ns |
| $f_{\max }$ | maximum clock pulse frequency | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 80 | - | - | MHz |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | 175 | - | - | MHz |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 175 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 175 | - | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 200 | - | - | MHz |

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
[3] $C_{P D}$ is used to determine the dynamic power dissipation ( $P_{D}$ in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
[4] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$.

## 12. Waveforms



Measurement points are given in Table 9.
The shaded areas indicate when the input is permitted to change for predictable output performance.
$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.
Fig 6. The clock input (CP) to output (Q) propagation delays, the clock pulse width, the D to CP set-up, the CP to D hold times and the maximum clock pulse frequency.

Table 9: Measurement points

| Supply voltage | Output | Input |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{V}_{\mathbf{C C}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$ |
| 1.65 V to 1.95 V | $0.5 \times \mathrm{V}_{C C}$ | $0.5 \times \mathrm{V}_{C C}$ | $\mathrm{~V}_{\mathrm{CC}}$ | $\leq 2.0 \mathrm{~ns}$ |
| 2.3 V to 2.7 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\leq 2.0 \mathrm{~ns}$ |
| 2.7 V | 1.5 V | 1.5 V | 2.7 V | $\leq 2.5 \mathrm{~ns}$ |
| 3.0 V to 3.6 V | 1.5 V | 1.5 V | 2.7 V | $\leq 2.5 \mathrm{~ns}$ |
| 4.5 V to 5.5 V | $0.5 \times \mathrm{V}_{C C}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\leq 2.5 \mathrm{~ns}$ |

$\overline{\mathrm{MR}}$ input
Measurement points are given in Table 9.
$\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.
The master reset ( $\overline{\mathrm{MR}}$ ) input to output (Q) propagation delays, the master reset
pulse width and the $\overline{\mathrm{MR}}$ to CP removal time.


Test data is given in Table 10.
Definitions for test circuit:
$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance $Z_{0}$ of the pulse generator.
Fig 8. Load circuitry for switching times.

Table 10: Test data

| Supply voltage | Input | Load | $\mathbf{V}_{\mathbf{E X T}}$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{V}_{\mathbf{C C}}$ | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{C}_{\mathbf{L}}$ | $\mathbf{R}_{\mathbf{L}}$ | $\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}$ | $\mathbf{t}_{\text {PZH, }}, \mathbf{t}_{\text {PHZ }}$ | $\mathbf{t}_{\text {PZL }}, \mathbf{t}_{\text {PLZ }}$ |  |  |
| 1.65 V to 1.95 V | $\mathrm{~V}_{\mathrm{CC}}$ | 30 pF | $1 \mathrm{k} \Omega$ | open | GND | $2 \times \mathrm{V}_{\mathrm{CC}}$ |  |  |
| 2.3 V to 2.7 V | $\mathrm{~V}_{\mathrm{CC}}$ | 30 pF | $500 \Omega$ | open | GND | $2 \times \mathrm{V}_{\mathrm{CC}}$ |  |  |
| 2.7 V | 2.7 V | 50 pF | $500 \Omega$ | open | GND | 6 V |  |  |
| 3.0 V to 3.6 V | 2.7 V | 50 pF | $500 \Omega$ | open | GND | 6 V |  |  |
| 4.5 V to 5.5 V | $\mathrm{~V}_{\mathrm{CC}}$ | 50 pF | $500 \Omega$ | open | GND | $2 \times \mathrm{V}_{\mathrm{CC}}$ |  |  |

## 13. Package outline

DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ | $\mathbf{A}_{\mathbf{1}}$ <br> $\mathbf{m a x}$ | $\mathbf{b} \mathbf{p}$ | $\mathbf{c}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{e}$ | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.1 | 0.1 | 0.30 | 0.25 | 2.2 | 1.35 | 1.3 | 0.65 | 2.2 | 0.45 |  |  |  |  |
|  | 0.8 | 0.20 | 0.10 | 1.8 | 1.15 | 0.25 | 0 | 0.2 | 0.2 | 0.1 |  |  |  |  |


| outline VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT363 |  |  | SC-88 | $\square \oplus$ | 97-02-28 |

Fig 9. Package outline SOT363 (SC-88).



detail X

DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{b p}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.1 | 0.1 | 0.40 | 0.26 | 3.1 | 1.7 | 0.95 | 3.0 | 0.6 | 0.33 | 0.2 | 0.2 | 0.1 |
|  | 0.9 | 0.013 | 0.25 | 0.10 | 2.7 | 1.3 | 2.5 | 0.2 | 0.23 | 0.2 | 0.2 |  |  |


| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  | $-97-02-28-$ |
| SOT457 |  |  | SC-74 |  | $01-05-04$ |  |

Fig 10. Package outline SOT457 (SC-74).


DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}^{(1)}$ <br> $\mathbf{m a x}$ | $\mathbf{A}_{\mathbf{1}}$ <br> $\max$ | $\mathbf{b}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{e}$ | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 0.5 | 0.04 | 0.25 | 1.5 | 1.05 | 0.6 | 0.5 | 0.35 | 0.40 |
|  | 0.17 | 1.4 | 0.95 | 0.6 |  | 0.27 | 0.32 |  |  |

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |  |
|  |  | MO-252 |  |  | $04-07-22$ |  |

Fig 11. Package outline SOT886 (XSON6).
939775013762

## 14. Revision history

Table 11: Revision history

| Document ID | Release date | Data sheet status | Change notice | Doc. number | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 74LVC1G175_2 | 20041018 | Product data sheet | - | 939775013762 | 74LVC1G175_1 |
| Modifications | $\bullet$ | Package outline. Marking code and ESD data added. |  |  |  |
| 74LVC1G175_1 | 20040318 | Product data sheet | - | 939775012973 | - |

## 15. Data sheet status

| Level | Data sheet status $\underline{[1]}$ | Product status $\underline{[2][3]}$ [3] | Definition <br> I |
| :--- | :--- | :--- | :--- |
| Objective data | Development | This data sheet contains data from the objective specification for product development. Philips <br> Semiconductors reserves the right to change the specification in any manner without notice. |  |
| II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published <br> at a later date. Philips Semiconductors reserves the right to change the specification without notice, in <br> order to improve the design and supply the best possible product. |
| III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the <br> right to make changes at any time in order to improve the design, manufacturing and supply. Relevant <br> changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

## 16. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## 17. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## 18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

## 19. Contents

1 General description ..... 1
2 Features ..... 1
3 Quick reference data ..... 2
4 Ordering information ..... 2
5 Functional diagram ..... 2
6 Pinning information ..... 3
6.1 Pinning ..... 3
6.2 Pin description ..... 3
7 Functional description ..... 4
7.1 Function table ..... 4
8 Limiting values ..... 4
9 Recommended operating conditions. ..... 4
10 Static characteristics ..... 5
11 Dynamic characteristics ..... 7
12 Waveforms ..... 10
13 Package outline ..... 12
14 Revision history ..... 15
15 Data sheet status ..... 16
16 Definitions ..... 16
17 Disclaimers ..... 16
18 Contact information ..... 16
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 18 October 2004 Document number: 939775013762
Published in The Netherlands

