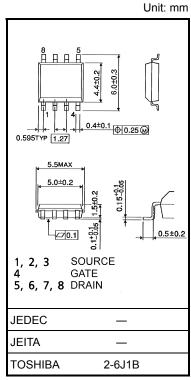
TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII)

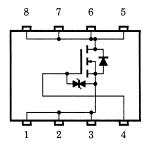
TPC8003

Lithium Ion Battery Applications Portable Equipment Applications Notebook PC Applications


- Small footprint due to small and thin package
- Low drain-source ON resistance $: RDS (ON) = 5.4 \text{ m}\Omega (typ.)$
- High forward transfer admittance : $|Y_{fs}| = 21 \text{ S (typ.)}$
- Low leakage current $: I_{DSS} = 10 \ \mu A \ (max) \ (V_{DS} = 30 \ V)$
- Enhancement mode : $V_{th} = 0.8 \sim 2.5 V (V_{DS} = 10 V, I_D = 1 mA)$

Maximum Ratings (Ta = 25°C)

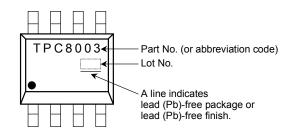
Characte	ristics	Symbol	Rating	Unit	
Drain-source voltage		V _{DSS}	30	V	
Drain-gate voltage (R	t _{GS} = 20 kΩ)	V _{DGR}	30	V	
Gate-source voltage		V _{GSS}	±20	V	
Drain current	DC (Note 1)	I _D	13	А	
Drain current	Pulse (Note 1)	I _{DP}	52	~	
Drain power dissipati	on (t = 10 s) (Note 2a)	PD	2.4	W	
Drain power dissipati	on (t = 10 s) (Note 2b)	PD	1.0	W	
Single pulse avalancl	ne energy (Note 3)	E _{AS}	220	mJ	
Avalanche current		I _{AR}	13	A	
Repetitive avalanche (energy Note 2a) (Note 4)	E _{AR}	0.24	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature	range	T _{stg}	−55 to 150	°C	


Note 1, Note 2, Note 3 and Note 4: See the next page.

This transistor is an electrostatic-sensitive device. Please handle with caution.

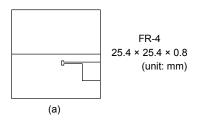
Weight: 0.080 g (typ.)

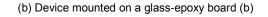
Circuit Configuration

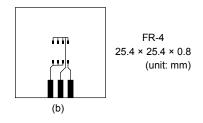


1

Thermal Characteristics


Characteristics	Symbol	Max	Unit
Thermal resistance, channel to ambient (t = 10 s) (Note 2a)	R _{th (ch-a)}	52.1	°C/W
Thermal resistance, channel to ambient (t = 10 s) (Note 2b)	R _{th (ch-a)}	125	°C/W


Marking (Note 5)



Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (a)

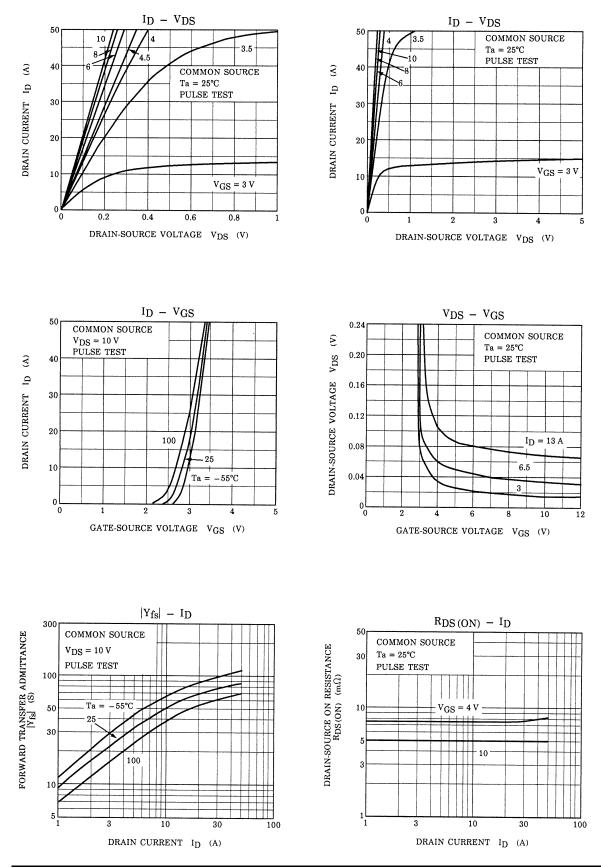
Note 3: V_DD = 24 V, T_ch = 25°C (initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = 13 A

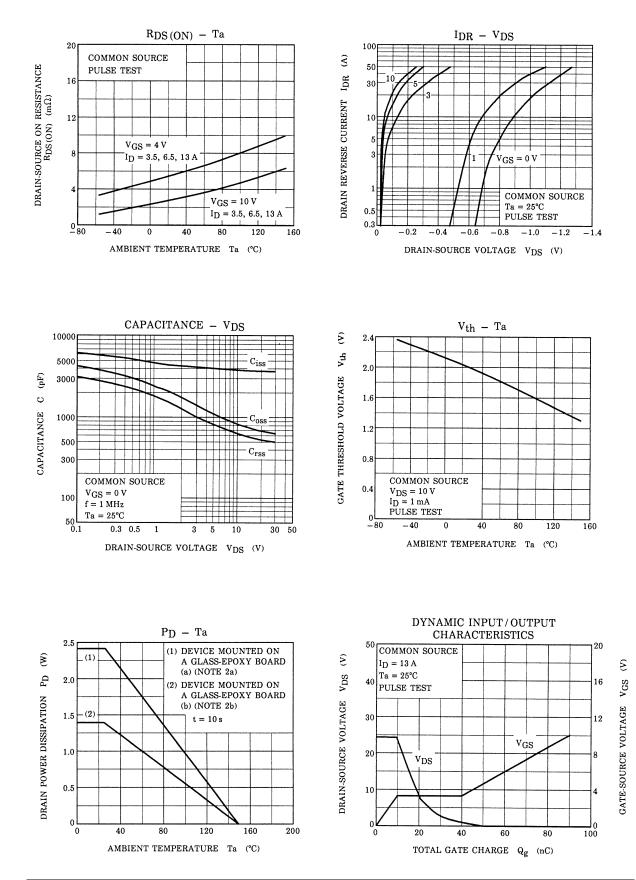
Note 4: Reptitve rating: pulse width limited by maximum channel temperature

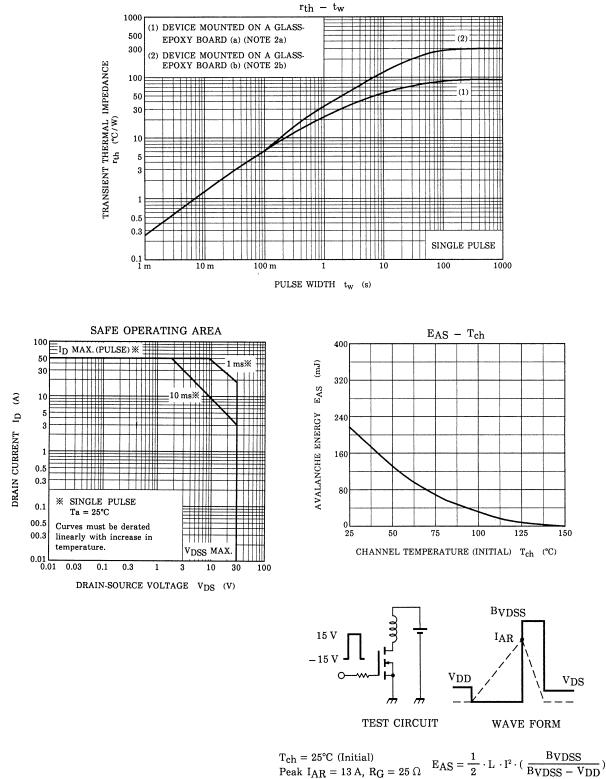
Note 5: ● on lower left of the marking indicates Pin 1.

☆ Weekly code: (Three digits)

Week of manufacture (01 for the first week of a year: sequential number up to 52 or 53)


 Year of manufacture (The last digit of a year)


Electrical Characteristics (Ta = 25°C)


Charao	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	urrent	I _{GSS}	V_{GS} = ±16 V, V_{DS} = 0 V	_	—	±10	μA
Drain cut-off cu	rrent	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	— — 10		10	μA
Drain-source breakdown voltage		V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	30		_	V
		V (BR) DSX	$I_{\rm D}$ = 10 mA, $V_{\rm GS}$ = -20 V	15			V
Gate threshold voltage		V _{th}	V _{DS} = 10 V, I _D = 1 mA	0.8		2.5	V
Drain-source ON resistance		R _{DS (ON)}	V _{GS} = 4 V, I _D = 6.5 A		8.3	13	mΩ
		R _{DS (ON)}	V _{GS} = 10 V, I _D = 6.5 A	—	5.4	7	mΩ
Forward transfe	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 6.5 A	10.5	21	_	S
Input capacitance		C _{iss}		_	4380	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	500	_	pF
Output capacitance		C _{oss}		_	890	_	
Switching time	Rise time	tr	$V_{GS} \stackrel{10 \text{ V}}{}_{0 \text{ V}} \int_{V} \int_{V} \int_{V} \int_{V} V_{OUT} R_{L} = 2.3 \Omega$ $V_{DD} = 15 \text{ V}$ $Duty \leq 1\%, t_{W} = 10 \mu \text{s}$	_	14	_	
	Turn-on time	t _{on}		_	27	_	
	Fall time	t _f		_	72	_	ns
	Turn-off time	t _{off}		_	235	_	
Total gate charge (Gate-source plus gate-drain)		Qg			90	_	
Gate-source charge		Q _{gs}	V _{DD} ≈ 24 V, V _{GS} = 10 V, I _D = 13 A		60	_	nC
Gate-drain ("miller") charge		Q _{gd}		_	30	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Charac	teristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_	_	52	А
Forward voltage	(diode)	V _{DSF}	I _{DR} = 13 A, V _{GS} = 0 V			-1.2	V

