HYBRID INTEGRATED CIRCUIT VHF/UHF WIDE-BAND AMPLIFIER

Three-stage wide-band amplifier in hybrid integrated circuit technique on a thin-film substrate, intended for use in mast-head booster-amplifiers, as an amplifier in MATV systems, and as general-purpose amplifier for v.h.f. and u.h.f. applications.

QUICK REFERENCE DATA

Frequency range	f		40 to 860	MHz
Source and load (characteristic) impedance	$R_s = R_{\ell} = Z_o$	=	75	Ω
Transducer gain	$G_{tr} = s_f ^2$	typ.	28	dB
Flatness of frequency response	$\pm \Delta s_f ^2$	typ.	1	d B
Output voltage at60 dB intermodulation distortion (DIN 45004, 3-tone)	Vo(rms)	>	105	dΒμV
Noise figure	F	typ.	6	dB
D.C. supply voltage	v_B	=	12	V ± 10%
Operating ambient temperature	T_{amb}		-20 to +70	oC

ENCAPSULATION 8-pin, in-line, resin-coated body, see MECHANICAL DATA (Fig. 2)

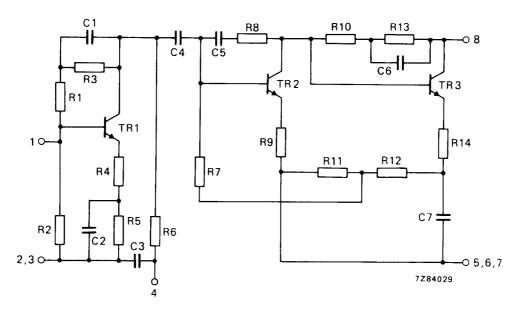


Fig. 1 Circuit diagram.

RATINGS

HATINGS						
Limiting values in accor	dance with the Abso	lute Maximum			•	_
Operating ambient temp	oerature		T_{amb}	-20 to +70		
Storage temperature			T_{stg}	-40 to +125		
D.C. supply voltage			v_B	max.	15	
Peak incident powers or	n pins 1 and 8		P _{11M} , P _{18M}	max.	100	mW
CHARACTERISTICS						
Measuring conditions						
Ambient temperature			T_{amb}	=		οС
D.C. supply voltage			VΒ	=	12	
Source impedance and	load impedance		₽s, RĮ	=	75	Ω
Characteristic impedant	ce of h.f. connections	}	z_{o}	=	75	Ω
Frequency range			f	=	40 to 860	MHz
Performance						
Supply current			۱ _B	typ.		mA
Transducer gain			$G_{tr} = s_f ^2$	typ.	28 26 to 31	dB dB
Flatness of frequency r	esponse		$\pm \Delta s_f ^2$	typ.	1	dB
Individual maximum v. input	s.w.r.		VSWR _(i)	typ.	1,5	*
output			VSWR _(o)	typ.	1,7	*
Back attenuation			s _r ²	typ.	45	dB
f = 100 MHz f = 860 MHz			is _r i ²	typ.	-	dB
Output voltage				>	105	dΒμV
at60 dB intermod (DIN 45004, par. 6,3			Vo(rms)	typ.		dBμV dBμV
Noise figure			F	typ.	6	dB
	s-parameters:	s _f = s ₂₁	s _i = s ₁₁			
		s _r = s ₁₂	s _o = s ₂₂			

^{*} Highest value, for a sample, occurring in the frequency range.

Dimensions in mm

OPERATING CONDITIONS

Ambient temperature range	T_{amb}		-20 to +70	oC
D.C. supply voltage	v_{B}	=	12	V ± 10%
Frequency range	f		40 to 860	MHz
Source impedance and load impedance	R_{s} , R_{ℓ}	=	75	Ω

MECHANICAL DATA

The device is resin coated.

Fig. 2 Encapsulation.

Terminal connections

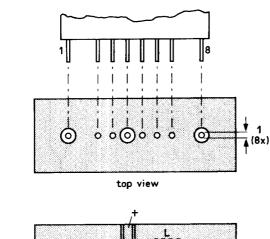
```
1 = input
2, 3, 5, 6, 7 = common
4 = supply (+)
8 = output/supply (+)
```

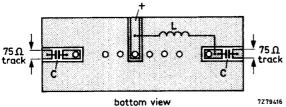
Soldering recommendations

Hand soldering

Maximum contact time for a soldering-iron temperature of 260 °C up to the seating plane is 5 s.

Dip or wave soldering


260 °C is the maximum permissible temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted against the printed-circuit board, but the temperature of the device must not exceed 125 °C. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature below the allowable limit.


Mounting recommendations

The module should preferably be mounted on double-sided printed-circuit board, see the example shown below.

Input and output should be connected to 75 Ω tracks.

The connections to the 'common' pins should be as close to the seating plane as possible.

L > 5 µH; e.g. catalogue no. 3122 108 20150 or 27 turns enamelled Cu wire (0,3 mm) wound on a ferrite core (material 4B1; catalogue number 3122 104 91110) with a diameter of 1,6 mm. C > 220 pF ceramic capacitor.

Fig. 3 Printed-circuit board holes and tracks.

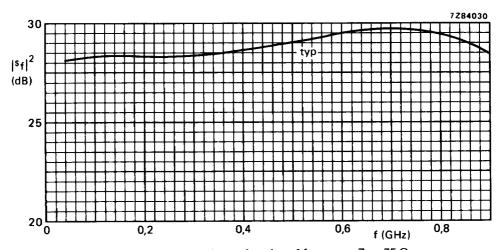


Fig. 4 Transducer gain as a function of frequency; $Z_0 = 75 \Omega$.

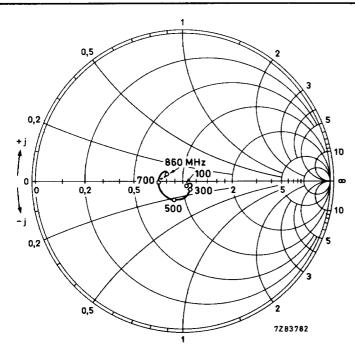


Fig. 5 Input impedance derived from input reflection coefficient s_i , co-ordinates in ohm x 75; typical values.

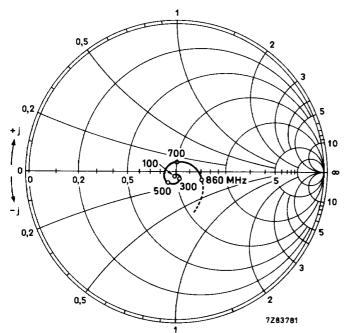


Fig. 6 Output impedance derived from output reflection coefficient s_0 , co-ordinates in ohm x 75; typical values.

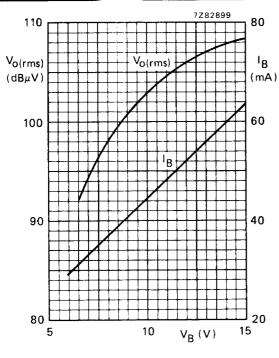
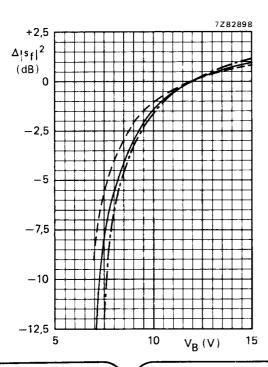



Fig. 7 Output voltage and supply current as a function of the supply voltage; typical values.

---- f = 100 MHz;

----- f = 860 MHz;

typical values.