HYBRID INTEGRATED CIRCUIT VHF/UHF WIDE-BAND AMPLIFIER

One-stage wide-band amplifier in hybrid integrated circuit technique on a thin-film substrate, intended for aerial amplifiers in car radios, caravans or RATV and MATV applications.

OUICK	DE	FFD	ENCE	DATA	
1,11,111.1	HГ	FER	CINC	DAIR	٠.

D.C. supply voltage	VB	=	12 V ± 10%	
Frequency range	f	4	10 to 860 MHz	
Source and load (characteristic) impedance	$R_s = R_{\ell} = Z_o$	=	75 Ω	
Transducer gain	$G_{tr} = s_f ^2$	typ.	12 dB	
Flatness of frequency response	$\pm \Delta s_f ^2$	typ.	1 dB	
Output voltage at -60 dB intermodulation distortion (DIN 45004, 3-tone)	Vo(rms)	typ.	99 dΒμV	
Noise figure	F	typ.	5,5 d B	
Operating ambient temperature	T _{amb}	2	-20 to + 70 °C	

ENCAPSULATION 5-pin, in-line, resin-coated body, see MECHANICAL DATA (Fig. 2)

Fig. 1 Circuit diagram.

RATINGS

Limiting values	s in accordance v	with the	Absolute Maximum	System	(IEC 134)

Limiting values in accordance with the Absolute maximit	in System (IEC 134)			
Operating ambient temperature	T _{amb}	-20 te	o +70	οС
Storage temperature	T_{stg}	-40 to	+125	oC
D.C. supply voltage	V _B	max.	15	V
Peak incident powers on pins 1 and 5	^Р I1М, ^Р I5М	max.	100	mW
CHARACTERISTICS				
Measuring conditions				
Ambient temperature	T_{amb}	=	25	οС
D.C. supply voltage	VΒ	=	12	٧
Source impedance and load impedance	R_{s},R_{ℓ}	=	75	Ω
Characteristic impedance of h.f. connections	Z _o	=	75	Ω
Frequency range	f	= 40 t	o 860	MHz
Performance				
Supply current	^I B	typ.	11,5	mΑ
Transducer gain	$G_{tr} = s_f ^2$	typ.	12	dB
Flatness of frequency response	$\pm \Delta \mathbf{s}_{f} ^2$	typ.	1	dB
Individual maximum v.s.w.r.				
input	VSWR _(i)	typ.	2,0	*
output	VSWR _(o)	typ.	1,4	*
Back attenuation				
f = 100 MHz	$ s_r ^2$	typ.	22	dB
f = 860 MHz	$ s_r ^2$	typ.	19	dB

s-parameters:
$$s_f = s_{21}$$
 $s_i = s_{11}$ $s_r = s_{12}$ $s_0 = s_{22}$

 $V_{o(rms)}$

F

 $99 \text{ dB}\mu\text{V}$

5,5 dB

typ.

typ.

Output voltage

Noise figure

at -60 dB intermodulation distortion (DIN 45004, par. 6.3: 3-tone)

^{*} Highest value, for a sample, occuring in the frequency range.

OPERATING CONDITIONS

Ambient temperature range	T_{amb}	-20 to + 70 °C		
D.C. supply voltage	v_B	==	12 V ±10%	
Frequency range	f		40 to 860 MHz	
Source impedance and load impedance	$R_{s,}R_{\ell}$	=	75 Ω	

MECHANICAL DATA

The device is resin coated.

Dimensions in mm

Fig. 2 Encapsulation.

Terminal connections

1 = input 2,3 = common 4 = supply (+) 5 = output

Soldering recommendations

Hand soldering

Maximum contact time for a soldering-iron temperature of 260 °C up to the seating plane is 5 s.

Dip or wave soldering

260 °C is the maximum permissible temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted against the printed-circuit board, but the temperature of the device must not exceed 125 °C. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature below the allowable limit.

Mounting recommendations

The module should preferably be mounted on double-sided printed-circuit board, see the example shown below.

Input and output should be connected to 75 Ω tracks.

The connections to the 'common' pins should be as close to the seating plane as possible.

Fig. 3 Printed-circuit board holes and tracks. C > 220 pF ceramic capacitor.

Fig. 4 Transducer gain as a function of frequency; $Z_0 = 75 \Omega$.

Fig. 5 Input impedance derived from input reflection coefficient s_i , co-ordinates in ohm x 75; typical values.

Fig. 6 Output impedance derived from output reflection coefficient s_0 , co-ordinates in ohm x 75; typical values.

Fig. 7 Output voltage and supply current as a function of the supply voltage; typical values.

Fig. 8 Variation of transducer gain with supply voltage; reference 0 dB at 12 V; f = 100 to 860 MHz; typical values.