# International Rectifier

# MBRS320TRPbF

# SCHOTTKY RECTIFIER

3 Amp

 $I_{F(AV)} = 3.0 Amp$  $V_R = 20 V$ 

#### **Major Ratings and Characteristics**

| Characteristics                                 | Value       | Units |  |
|-------------------------------------------------|-------------|-------|--|
| I <sub>F(AV)</sub> Rectangular waveform         | 3.0         | Α     |  |
| V <sub>RRM</sub>                                | 20          | V     |  |
| I <sub>FSM</sub> @t <sub>p</sub> =5μs sine      | 820         | Α     |  |
| V <sub>F</sub> @3.0 Apk, T <sub>J</sub> = 125°C | 0.36        | V     |  |
| T <sub>J</sub> range                            | - 65 to 150 | °C    |  |

#### **Description/ Features**

The MBRS320TRPbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)



# Voltage Ratings

| Part number                                            | MBRS320PbF |  |
|--------------------------------------------------------|------------|--|
| V <sub>R</sub> Max. DC Reverse Voltage (V)             | 20         |  |
| V <sub>RWM</sub> Max. Working Peak Reverse Voltage (V) | 20         |  |

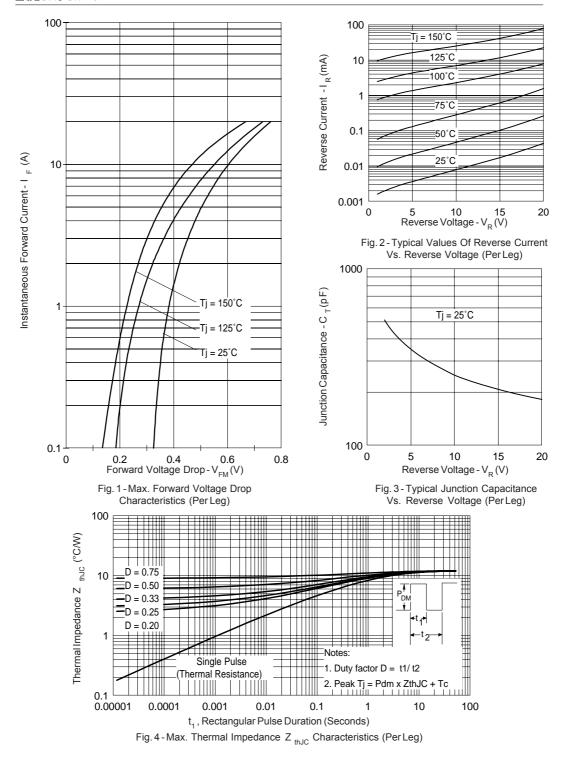
# Absolute Maximum Ratings

|                    | Parameters                         | Value | Units | Conditions                                                                                                    |                                        |
|--------------------|------------------------------------|-------|-------|---------------------------------------------------------------------------------------------------------------|----------------------------------------|
| I <sub>F(AV)</sub> | Max. Average Forward Current       | 3.0   | Α     | 50% duty cycle @ T <sub>L</sub> = 136°C,                                                                      | rectangular wave form                  |
| I <sub>FSM</sub>   | Max. Peak One Cycle Non-Repetitive | 820   |       | 5μs Sine or 3μs Rect. pulse                                                                                   | Following any rated load condition and |
|                    | Surge Current                      | 80    |       | 10ms Sine or 6ms Rect. pulse                                                                                  | with rated V <sub>RRM</sub> applied    |
| E <sub>AS</sub>    | Non Repetitive Avalanche Energy    | 4     | mJ    | $T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.0\text{A}, L = 8\text{mH}$                                             |                                        |
| I <sub>AR</sub>    | Repetitive Avalanche Current       | 1.0   | А     | Current decaying linearly to zero in 1 µsec<br>Frequency limited by T <sub>J</sub> max. Va = 1.5 x Vr typical |                                        |

# **Electrical Specifications**

|                 | Parameters                       | Тур. | Max.  | Units | Conditio                                                       | ns                                    |
|-----------------|----------------------------------|------|-------|-------|----------------------------------------------------------------|---------------------------------------|
| V <sub>FM</sub> | Max. Forward Voltage Drop (1)    | 0.41 | 0.45  | V     | @ 3A                                                           | T = 25 °C                             |
|                 |                                  | 0.45 | 0.53  | V     | @ 6A                                                           | T <sub>J</sub> = 25 °C                |
|                 |                                  | 0.29 | 0.36  | V     | @ 3A                                                           | T = 125 °C                            |
|                 |                                  | 0.35 | 0.46  | V     | @ 6A                                                           | T <sub>J</sub> = 125 °C               |
| I <sub>RM</sub> | Max. Reverse Leakage Current (1) | 0.04 | 0.5   | mA    | T <sub>J</sub> = 25 °C                                         |                                       |
|                 |                                  | 8.0  | 20    | mA    | T <sub>J</sub> = 100 °C                                        | V <sub>R</sub> = rated V <sub>R</sub> |
|                 |                                  | 23   | 35    | mA    | T <sub>J</sub> = 125 °C                                        |                                       |
| C <sub>T</sub>  | Typical Junction Capacitance     | 360  | -     | pF    | V <sub>R</sub> = 5V <sub>DC</sub> (test signal range 100kHz to |                                       |
|                 |                                  |      |       |       | 1Mhz), @ 25°                                                   | С                                     |
| L <sub>S</sub>  | Typical Series Inductance        | 3.0  | -     | nH    | Measured lead to lead 5mm from package body                    |                                       |
| dv/dt           | Max. Voltage Rate of Change      | -    | 10000 | V/ µs | (Rated V <sub>R</sub> )                                        |                                       |

<sup>(1)</sup> Pulse Width < 300µs, Duty Cycle < 2%


# Thermal-Mechanical Specifications

|                   | Parameters                                    | Value       | Units   | Conditions       |
|-------------------|-----------------------------------------------|-------------|---------|------------------|
| T <sub>J</sub>    | Max. Junction Temperature Range (*)           | - 65 to 150 | °C      |                  |
| T <sub>stg</sub>  | Max. Storage Temperature Range                | -65 to 150  | °C      |                  |
| R <sub>thJL</sub> | Max. Thermal Resistance Junction to Lead (**) | 12          | °C/W    | DC operation     |
| R <sub>thJA</sub> | Max. Thermal Resistance Junction              | 46          | °C/W    |                  |
|                   | to Ambient                                    |             |         |                  |
| Wt                | Approximate Weight                            | 0.24(0.008) | gr (oz) |                  |
|                   | Case Style                                    | SMC         |         | Similar DO-214AB |
|                   | Device Marking                                | IR32        |         |                  |

 $<sup>\</sup>frac{\text{(*)}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$ 

<sup>(\*\*)</sup> Mounted 1 inch square PCB

Bulletin PD-20410 07/04



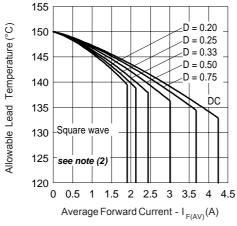



Fig. 5 - Maximum Average Forward Current Vs. Allowable Lead Temperature

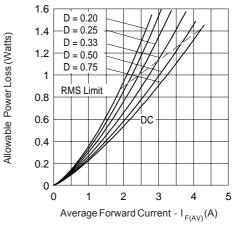
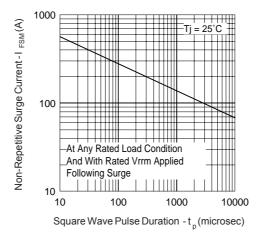
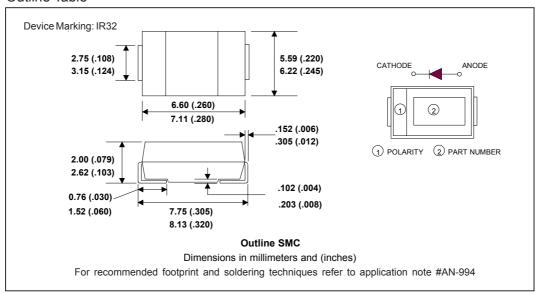
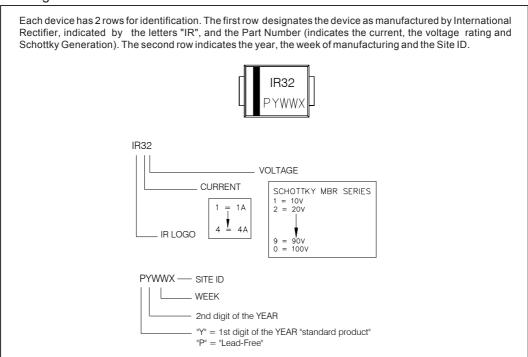
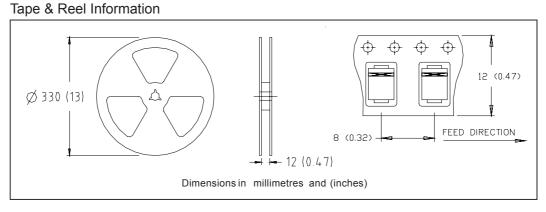



Fig. 6 - Maximum Average Forward Dissipation Vs. Average Forward Current



Fig. 7 - Maximum Peak Surge Forward Current Vs. Pulse Duration


(2) Formula used:  $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$ ;  $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$  (see Fig. 6);  $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$ 

#### **Outline Table**



# Marking & Identification





#### Ordering Information Table



Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/04