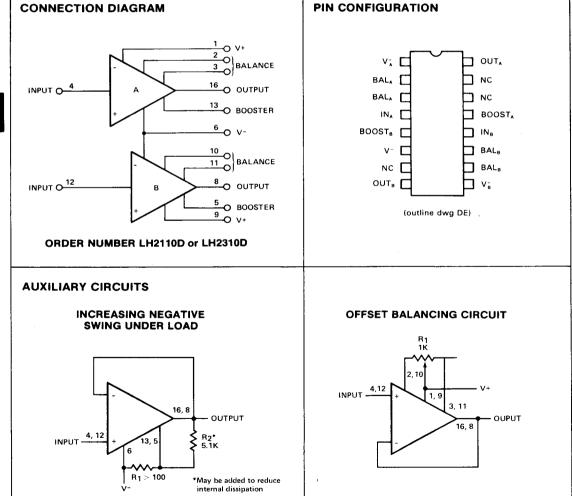
LH2110/LH2310 Dual Voltage Follower

FEATURES


- Low input current 1 nA
- High input resistance 10 M Ω
- High slew rate 30V/µs
- Wide bandwidth 20 MHz
- Wide operating supply range ±5V to ±18V
- · Output short circuit protected.

GENERAL DESCRIPTION

The LH2110 series of dual voltage followers consist of two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.

The LH2110 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range, and the LH2310 is specified for operation from 0° C to $+70^{\circ}$ C.

LH2110/LH2310

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Power Dissipation (Note 1)	
Input Voltage (Note 2)	±15V
Output Short Circuit Duration (Note 3)	
Operating Temperature RangeLH2110	55°C to 125°C
LH2310	. 0°C to 70°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec)	

ELECTRICAL CHARACTERISTICS Each side (Note 4)

PARAMETER	CONDITIONS	LIMITS		
		LH2110	LH2310	UNITS
Input Offset Voltage	T _A = 25°C	4.0	7.5	mV Max
Input Bias Current	T _A = 25°C	3.0	7.0	nA Max
Input Resistance	T _A = 25°C	10M	10M	ΩMin
Input Capacitance		1.5	1.5	pF Typ
Large Signal Voltage Gain	$T_A = 25^{\circ} \text{ C}, V_S = \pm 15 \text{ V}$ $V_{OUT} = \pm 10 \text{ V}, R_L = 8 \text{ k}\Omega$.999	.999	V/V Min
Output Resistance	T _A = 25° C	2.5	2.5	Ω Max
Supply Current (Each Amplifier)	T _A = 25° C	5.5	5.5	mA Max
Input Offset Voltage	·	6.0	10	mV Max
Offset Voltage	-55° C ≤ T _A ≤ 85° C	6	10	μV/°C Typ
Temperature Drift	T _A = 125°C	12	_	
Input Bias Current		. 10	10	nA Max
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L = 10 \text{ k}\Omega$.999	.999	V/V Min
Output Voltage Swing (Note 5)	$V_S = \pm 15V$, R _L 10 k Ω	±10	±10	V Min
Supply Current (Each Amplifier)	T _A = 125°C	4.0	_	mA Max
Supply Voltage Rejection Ratio	$\pm 5V \le V_S \le \pm 18V$	70	70	dB Min

Note 1: The maximum junction temperature of the LH2110 is 150° C, while that of the LH2310 is 85° C. The thermal resistance of the package is 100° C/W, junction to ambient.

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 125° C and ambient temperatures to 70° C. It is necessary to insert a resistor greater than 2 K Ω in series with the inut when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. Note 4: These specifications apply for $\pm 5V \le V_S \le \pm 18V$ and $\pm 55^\circ$ C $\le T_A \le 125^\circ$ C, unless otherwise specified, and for the LH2310, all temperature specifications are limited to 0° C $\le T_A \le 70^\circ$ C.

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V- terminals.