
Altera Corporation Cor
June 2004

MII51003-1.1
Chapter 3. JTAG & In-System
Programmability
IEEE Std. 1149.1
(JTAG) Boundary
Scan Support

All MAX® II devices provide Joint Test Action Group (JTAG) boundary-
scan test (BST) circuitry that complies with the IEEE Std. 1149.1-2001
specification. JTAG boundary-scan testing can only be performed at any
time after VCCINT and all VCCIO banks have been fully powered and a
tCONFIG amount of time has passed. MAX II devices can also use the JTAG
port for in-system programming together with either the Quartus® II
software or hardware using Programming Object Files (.pof), JamTM
Standard Test and Programming Language (STAPL) Files (.jam) or Jam
Byte-Code Files (.jbc).

The JTAG pins support 1.5-V, 1.8-V, 2.5-V, or 3.3-V I/O standards. The
supported voltage level and standard is determined by the VCCIO of the
bank where it resides. The dedicated JTAG pins reside in Bank 1 of all
MAX II devices.

MAX II devices support the JTAG instructions shown in Table 3–1.

Table 3–1. MAX II JTAG Instructions (Part 1 of 2)

JTAG Instruction Instruction Code Description

SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured
and examined during normal device operation, and permits an
initial data pattern to be output at the device pins.

EXTEST (1) 00 0000 1111 Allows the external circuitry and board-level interconnects to
be tested by forcing a test pattern at the output pins and
capturing test results at the input pins.

BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO
pins, which allows the boundary scan test data to pass
synchronously through selected devices to adjacent devices
during normal device operation.

USERCODE 00 0000 0111 Selects the 32-bit USERCODE register and places it between
the TDI and TDO pins, allowing the USERCODE to be serially
shifted out of TDO. This register defaults to all 1’s if not
specified in the Quartus II software.

IDCODE 00 0000 0110 Selects the IDCODE register and places it between TDI and
TDO, allowing the IDCODE to be serially shifted out of TDO.
e Version a.b.c variable 3–1
Preliminary

IEEE Std. 1149.1 (JTAG) Boundary Scan Support
HIGHZ (1) 00 0000 1011 Places the 1-bit bypass register between the TDI and TDO
pins, which allows the boundary scan test data to pass
synchronously through selected devices to adjacent devices
during normal device operation, while tri-stating all of the I/O
pins.

CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO
pins, which allows the boundary scan test data to pass
synchronously through selected devices to adjacent devices
during normal device operation, while holding I/O pins to a
state defined by the data in the boundary-scan register.

USER0 00 0000 1100 This instruction allows the user to define their own scan chain
between TDI and TDO in the MAX II logic array. This
instruction is also used for custom logic and JTAG interfaces.

USER1 00 0000 1110 This instruction allows the user to define their own scan chain
between TDI and TDO in the MAX II logic array. This
instruction is also used for custom logic and JTAG interfaces.

IEEE 1532 instructions (2) IEEE 1532 ISC instructions used when programming a MAX II
device via the JTAG port.

Notes to Table 3–1:
(1) HIGHZ, CLAMP, and EXTEST instructions do not disable weak pull-up resistors or bus hold features.
(2) These instructions are shown in the 1532 BSDL files, which will be posted on the Altera® web site at

www.altera.com when they are available.

Table 3–1. MAX II JTAG Instructions (Part 2 of 2)

JTAG Instruction Instruction Code Description
3–2 Core Version a.b.c variable Altera Corporation
MAX II Device Handbook, Volume 1 June 2004

JTAG & In-System Programmability
The MAX II device instruction register length is 10 bits and the USERCODE
register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan
register length and device IDCODE information for MAX II devices.

f For JTAG AC characteristics, refer to the chapter on DC & Switching
Characteristics. For more information on JTAG BST, see the chapter on
IEEE 1149.1 (JTAG) Boundary-Scan Testing for MAX II Devices.

JTAG Translator

The JTAG translator feature allows you to access the JTAG TAP and state
signals when either the USER0 or USER1 instruction is issued to the JTAG
TAP. The USER0 and USER1 instructions bring the JTAG boundary scan
chain (TDI) through the user logic instead of the MAX II device’s
boundary scan cells. Each USER instruction allows for one unique user-
defined JTAG chain into the logic array.

Table 3–2. MAX II Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPM240 240

EPM570 480

EPM1270 636

EPM2210 816

Table 3–3. 32-Bit MAX II Device IDCODE

Device

Binary IDCODE (32 Bits) (1)

HEX IDCODEVersion
(4 Bits) Part Number Manufacturer

Identity (11 Bits)
LSB

(1 Bit) (2)

EPM240 0000 0010 0000 1010 0001 000 0110 1110 1 0x020A10DD

EPM570 0000 0010 0000 1010 0010 000 0110 1110 1 0x020A20DD

EPM1270 0000 0010 0000 1010 0011 000 0110 1110 1 0x020A30DD

EPM2210 0000 0010 0000 1010 0100 000 0110 1110 1 0x020A40DD

Notes to Table 3–2:
(1) The most significant bit (MSB) is on the left.
(2) The IDCODE's least significant bit (LSB) is always 1.
Altera Corporation Core Version a.b.c variable 3–3
June 2004 MAX II Device Handbook, Volume 1

In System Programmability
General-Purpose Flash Loader

The JTAG translator ability to interface JTAG to non-JTAG devices is ideal
for general-purpose flash memory devices (such as Intel or Fujitsu based
devices) that require programming during in-circuit test. The flash
memory devices can be used for FPGA configuration or be part of system
memory. In many cases, the MAX II device is already connected to these
devices as the configuration control logic between the FPGA and the flash
device. Unlike ISP-capable CPLD devices, bulk flash devices do not have
JTAG TAP pins or connections. For small flash devices, it is common to
use the serial JTAG scan chain of a connected device to program the non-
JTAG flash device. This is slow and inefficient in most cases and
impractical for large parallel flash devices. Using the MAX II device’s
JTAG translator as a general-purpose flash loader to program and verify
flash contents provides a fast and cost-effective means of in-circuit
programming during test. Figure 3–1 shows MAX II being used as a
general-purpose flash loader.

Figure 3–1. MAX II JTAG Translator as General-Purpose Flash Loader

Notes to Figure 3–1:
(1) This block is implemented in LEs.
(2) This function will be supported in a future version of the Quartus II software.

In System
Programmability

MAX II devices can be programmed in-system via the industry standard
4-pin IEEE Std. 1149.1 (JTAG) interface. In system programmability (ISP)
offers quick, efficient iterations during design development and

General-
Purpose

Flash Loader
Logic

Flash
Memory Device

MAX II Device

DQ[7..0]

RY/BY

A[20..0]
OE
WE
CE

DQ[7..0]

RY/BY

A[20..0]
OE
WE
CE

TDI
TMS
TCK

TDI_U
TDO_U

TMS_U
TCK_U

SHIFT_U
CLKDR_U

UPDATE_U
RUNIDLE_U

USER1_U

TDO (1), (2)
3–4 Core Version a.b.c variable Altera Corporation
MAX II Device Handbook, Volume 1 June 2004

JTAG & In-System Programmability
debugging cycles. The logic, circuitry, and interconnects in the MAX II
architecture are configured with flash-based SRAM configuration
elements. These SRAM elements require configuration data to be loaded
each time the device is powered. The process of loading the SRAM data
is called configuration. The on-chip configuration flash memory (CFM)
block stores the SRAM element’s configuration data. The CFM block
stores the design’s configuration pattern in a reprogrammable flash array.
During ISP, the MAX II JTAG and ISP circuitry programs the design
pattern into the CFM block’s non-volatile flash array.

The MAX II JTAG and ISP controller internally generate the high
programming voltages required to program the CFM cells, allowing in-
system programming with any of the recommended operating external
voltage supplies (i.e., 3.3 V/2.5 V or 1.8 V for the MAX II devices with a
“G” ordering code). ISP can be performed anytime after VCCINT and all
VCCIO banks have been fully powered and the device has completed the
configuration power-up time. By default, during in-system
programming, the I/O pins are tri-stated and weakly pulled-up to VCCIO
to eliminate board conflicts. The pull-up value ranges from 5 to 40 kΩ .
There are two other options in MAX II devices that allow user control of
I/O state or behavior during ISP.

f For more information, refer to “In-System Programming Clamp” on
page 3–8 and “Real-Time ISP” on page 3–8.

These devices also offer an ISP_DONE bit that provides safe operation
when in-system programming is interrupted. This ISP_DONE bit, which
is the last bit programmed, prevents all I/O pins from driving until the
bit is programmed.

IEEE 1532 Support

The JTAG circuitry and ISP instruction set in MAX II devices is compliant
to the IEEE 1532-2002 programming specification. This provides
industry-standard hardware and software for in-system programming
among multiple vendor programmable logic devices (PLDs) in a JTAG
chain.

The MAX II 1532 BSDL files will be released on the Altera web site when
available.
Altera Corporation Core Version a.b.c variable 3–5
June 2004 MAX II Device Handbook, Volume 1

In System Programmability
Jam Standard Test & Programming Language (STAPL)

The Jam STAPL JEDEC standard, JESD71, can be used to program MAX II
devices with in-circuit testers, PCs, or embedded processors. The Jam
byte code is also supported for MAX II devices. These software
programming protocols provide a compact embedded solution for
programming MAX II devices.

f For more information, see the chapter on Using Jam STAPL for ISP via an
Embedded Processor.
3–6 Core Version a.b.c variable Altera Corporation
MAX II Device Handbook, Volume 1 June 2004

JTAG & In-System Programmability
Programming Sequence

During in-system programming, 1532 instructions, addresses, and data
are shifted into the MAX II device through the TDI input pin. Data is
shifted out through the TDO output pin and compared against the
expected data. Programming a pattern into the device requires the
following six ISP steps. A stand-alone verification of a programmed
pattern involves only stages 1, 2, 5, and 6. These steps are automatically
executed by third-party programmers, the Quartus® II software, or the
Jam STAPL and Jam Byte-Code Players.

1. Enter ISP – The enter ISP stage ensures that the I/O pins transition
smoothly from user mode to ISP mode.

2. Check ID – Before any program or verify process, the silicon ID is
checked. The time required to read this silicon ID is relatively small
compared to the overall programming time.

3. Bulk Erase – Erasing the device in-system involves shifting in the
instruction to erase the device and applying an erase pulse(s). The
erase pulse is automatically generated internally by waiting in the
run/test/idle state for the specified erase pulse time of 350 ms.

4. Program – Programming the device in-system involves shifting in
the address, data, and program instruction and generating the
program pulse to program the flash cells. The program pulse is
automatically generated internally by waiting in the run/test/idle
state for the specified program pulse time of 75 µs. This process is
repeated for each address in the CFM block.

5. Verify – Verifying a MAX II device in-system involves shifting in
addresses, applying the verify instruction to generate the read
pulse, and shifting out the data for comparison. This process is
repeated for each CFM address.

6. Exit ISP – An exit ISP stage ensures that the I/O pins transition
smoothly from ISP mode to user mode.

For TCK frequencies of 10 MHz, the erase and programming takes less
than one second for EPM240 and EPM570 devices. Erase and
programming times are less than two seconds for EPM1270 and less than
three seconds for the EPM2210 devices. The TCK frequency can operate at
up to 25 MHz in MAX II devices providing slight improvements in these
ISP times.
Altera Corporation Core Version a.b.c variable 3–7
June 2004 MAX II Device Handbook, Volume 1

In System Programmability
UFM Programming

The Quartus II software, with the use of POF, Jam, or JBC files, supports
programming of each user flash memory (UFM) block sector
independent from the logic array design pattern stored in the CFM block.
This allows updating or reading UFM contents through ISP without
altering the current logic array design, or vice versa. By default, these
programming files and methods will program both the entire flash
memory contents, which includes the CFM block and UFM contents. The
stand-alone embedded Jam STAPL player and Jam Byte-Code Player
provides action commands for programming or reading the entire flash
memory (UFM and CFM together) or each independently.

f For more information, see the chapter on Using Jam STAPL for ISP via an
Embedded Processor.

In-System Programming Clamp

By default, the IEEE 1532 instruction used for entering ISP automatically
tri-states all I/O pins with weak pull-up resistors for the duration of the
ISP sequence. However, some systems may require certain pins on
MAX II devices to maintain a specific DC logic level during an in-field
update. For these systems, an optional in-system programming clamp
instruction exists in MAX II circuitry to control I/O behavior during the
ISP sequence. The in-system programming clamp instruction enables the
device to sample and sustain the value on an output pin (an input pin
would remain tri-stated if sampled) or to explicitly set a logic high, logic
low, or tri-state value on any pin. Setting these options is controlled on an
individual pin basis using the Quartus II software.

Real-Time ISP

For systems that require more than DC logic level control of I/O pins, the
real-time ISP feature allows you to update the CFM block with a new
design image while the entire current design continues to operate in the
SRAM logic array and I/O pins. A new programming file is updated into
the MAX II device without halting the original design’s operation, saving
down-time costs for remote or field upgrades. The updated CFM block
configures the new design into the SRAM upon the next power cycle. It is
also possible to execute an immediate configuration of the SRAM without
a power cycle by using a specific sequence of ISP commands. The
configuration of SRAM without a power cycle takes a specific amount of
time (tCONFIG). During this time, the I/O pins are tri-stated and weakly
pulled-up to VCCIO.
3–8 Core Version a.b.c variable Altera Corporation
MAX II Device Handbook, Volume 1 June 2004

JTAG & In-System Programmability
The Quartus II software, Jam STAPL player, and Jam Byte-Code Player
provides the designer with the option to control real-time ISP (if used)
and allows the designer to control the timeline of new design
configuration into the SRAM (immediately or upon next power cycle).

Design Security

All MAX II devices contain a programmable security bit that controls
access to the data programmed into the CFM block. When this bit is
programmed, design programming information, stored in the CFM
block, cannot be copied or retrieved. This feature provides a high level of
design security because programmed data within flash memory cells is
invisible. The security bit that controls this function, as well as all other
programmed data, is reset only when the device is erased. The SRAM is
also invisible and cannot be accessed regardless of the security bit setting.
The UFM block data is not protected by the security bit and is accessible
through JTAG or logic array connections.

Programming with External Hardware

MAX II devices can be programmed by downloading the information via
in-circuit testers, embedded processors, the Altera® ByteblasterMV™,
MasterBlaster™, ByteBlaste™r II, and USB-Blaster cables, and through
the universal serial bus (USB)-based Altera Programming Unit (APU)
with the appropriate adapter.

BP Microsystems, System General, and other programming hardware
manufacturers provide programming support for Altera devices. Check
their web sites for device support information.
Altera Corporation Core Version a.b.c variable 3–9
June 2004 MAX II Device Handbook, Volume 1

In System Programmability
3–10 Core Version a.b.c variable Altera Corporation
MAX II Device Handbook, Volume 1 June 2004

