General Description
The MAX4634 fast, low-voltage, 4-channel CMOS analog multiplexer features $4 \Omega$ max on-resistance (RON). It offers RON matching between switches to $0.3 \Omega$ max and Ron flatness of $1 \Omega$ max over the specified signal range. Each switch can handle V+ to GND analog signals. Off-leakage current is only 0.1 nA max at $+25^{\circ} \mathrm{C}$. The MAX4634 features fast turn-on (tON) and turn-off (toff) times of 18 ns and 11 ns , respectively. All this comes in a tiny 10-pin $\mu \mathrm{MAX}$ package.
This low-voltage multiplexer operates from $\mathrm{a}+1.8 \mathrm{~V}$ to +5.5 V single supply. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility with +5 V operation.

Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits

> Guaranteed RoN $2.5 \Omega$ typ (5V Supply) $4.5 \Omega$ typ ( 3 V Supply)

- Guaranteed Ron Match Between Channels $0.3 \Omega$ max
- Guaranteed Ron Flatness Over Signal Range $1 \Omega$ max
- Guaranteed Low Leakage Currents
0.1 nA (at $+25^{\circ} \mathrm{C}$ )
- +1.8V to +5.5 V Single-Supply Operation
- +1.8V Operation

RoN $=30 \Omega$ typ Over Temperature
to $=30 \mathrm{~ns}$ typ, toff $=13 \mathrm{~ns}$ typ

- V+ to GND Signal Handling
- TTL/CMOS-Logic Compatible
- -78dB Crosstalk (at 1MHz)
- -80dB Off-Isolation (at 1MHz)
- 0.018\% Total Harmonic Distortion

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :---: | :--- | :--- |
| MAX4634EUB | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $10 \mu \mathrm{MAX}$ |

Pin Configuration/Functional Diagram/Truth Table


| A1 | AO | EN | ON SWITCH |
| :---: | :---: | :---: | :---: |
| $X$ | $X$ | 0 | NONE |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 2 |
| 1 | 0 | 1 | 3 |
| 1 | 1 | 1 | 4 |

X = DON'T CARE

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

# Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer 

## ABSOLUTE MAXIMUM RATINGS




Note 1: Signals on NO_ COM, EN, or A_ exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}$ IL $=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| Analog Signal Range | VCOM, <br> $\mathrm{V}_{\mathrm{NO}}$ |  |  | 0 |  | V+ | V |
| On-Resistance | Ron | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-}=0 \text { to } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 2.5 | 4 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 4.5 |  |
| On-Resistance Match Between Channels (Note 3) | $\Delta \mathrm{RoN}$ | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0.1 | 0.3 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 0.4 |  |
| On-Resistance Flatness <br> (Note 4) | RFLAT(ON) | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \mathrm{I}_{+} \mathrm{COM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-} \\ & =0 \text { to } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0.75 | 1 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 1.2 |  |
| NO_ Off-Leakage Current (Note 5) | INO_(OFF) | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}^{-}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.1 | $\pm 0.01$ | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -0.3 |  | 0.3 |  |
| COM Off-Leakage Current (Note 5) | ICOM(OFF) | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{VNO}_{-}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.1 | $\pm 0.01$ | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -0.65 |  | 0.65 |  |
| COM On-Leakage Current (Note 5) | ICOM(ON) | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO }}=1 \mathrm{~V}, 4.5 \mathrm{~V}, \end{aligned}$or floating | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.1 | $\pm 0.01$ | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -0.65 |  | 0.65 |  |
| DIGITAL I/O (A_, EN) |  |  |  |  |  |  |  |
| Input Logic High | $\mathrm{V}_{\mathrm{IH}}$ |  |  | 2.4 |  |  | V |
| Input Logic Low | VIL |  |  |  |  | 0.8 | V |
| Input Logic Current |  |  |  | -100 | 5 | 100 | nA |

# Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer 

## ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC |  |  |  |  |  |  |  |
| Turn-On Time (Note 5) | ton | $\begin{aligned} & \mathrm{V}_{N_{O}}=3 \mathrm{~V}, \\ & \mathrm{RL}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 14 | 18 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 20 |  |
| Turn-Off Time (Note 5) | toff | $\begin{aligned} & \mathrm{V}_{\text {NO_ }}=3 \mathrm{~V}, \\ & R L=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 6 | 11 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 13 |  |
| Break-Before-Make Time (Note 5) | tBBM | $\begin{aligned} & \mathrm{V}_{\text {NO_ }}=3 \mathrm{~V}, \\ & R L=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 3 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 8 |  | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 1 |  |  |  |
| Charge Injection | Q | VGEN $=2 \mathrm{~V}$, RGEN $=0, C L=5 p F$, Figure 4 |  |  | 2 |  | pC |
| Off-Isolation (Note 6) | VISO | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega,$ <br> Figure 5 | $\mathrm{f}=10 \mathrm{MHz}$ |  | -57 |  | dB |
|  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | -80 |  |  |
| Crosstalk (Note 7) | VCT | $C_{L}=5 p F, R_{L}=50 \Omega,$ <br> Figure 5 | $f=10 \mathrm{MHz}$ |  | -52 |  | dB |
|  |  |  | $f=1 \mathrm{MHz}$ |  | -78 |  |  |
| NO_ Off-Capacitance | CNO_(OFF) | Figure 6 |  |  | 13 |  | pF |
| COM Off-Capacitance | CCOm(OFF) | Figure 6 |  |  | 52 |  | pF |
| COM On-Capacitance | CCOM(ON) | $C \mathrm{~L}=5 \mathrm{pF}$, Figure 6 |  |  | 68 |  | pF |
| Total Harmonic Distortion | THD | $\mathrm{RL}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz |  |  | 0.018 |  | \% |
| POWER SUPPLY |  |  |  |  |  |  |  |
| Power-Supply Range | V+ |  |  | 1.8 |  | 5.5 | V |
| Positive Supply Current | I+ | $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=\mathrm{V}+$, | = 0 |  | 0.001 | 1.0 | $\mu \mathrm{A}$ |

## ELECTRICAL CHARACTERISTICS-Single +3 V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| Analog Signal Range | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}_{2}} \end{aligned}$ |  |  | 0 |  | V+ | V |
| On-Resistance | Ron | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \\ & \mathrm{I}_{+} \mathrm{COM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-} \\ & =0 \text { to } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 4.5 | 7 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 8 |  |
| On-Resistance Match Between Channels (Note 3) | $\triangle \mathrm{RON}$ | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=0 \text { to } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0.1 | 0.3 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 0.4 |  |

# Fast, Low-Voltage, 4 $\Omega$, 4-Channel CMOS Analog Multiplexer 

## ELECTRICAL CHARACTERISTICS-Single +3 V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| On-Resistance Flatness (Note 4) | RFLAT(ON) | $\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}^{2} \mathrm{COM}=10 \mathrm{~mA}, \\ & \mathrm{VNO}_{-}=0 \text { to } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 1.2 | 2.5 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 3 |  |
| NO_ Off-Leakage Current (Note 5) | INO_(OFF) | $\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V} ; \\ & \mathrm{VCOM}^{2} \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.1 | $\pm 0.01$ | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -0.3 |  | 0.3 |  |
| COM Off-Leakage Current (Note 5) | ICOM_(OFF) | $\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V} \\ & \mathrm{VCOM}^{2} \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.1 | $\pm 0.01$ | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -0.65 |  | 0.65 |  |
| COM On-Leakage Current (Note 5) | ICOM_(ON) | $\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V} \\ & \mathrm{VCom}=1 \mathrm{~V}, 3 \mathrm{~V} \text {; } \\ & \mathrm{VNO}_{\mathrm{NO}}=1 \mathrm{~V}, 3 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.1 | $\pm 0.01$ | 0.1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -0.65 |  | 0.65 |  |
| DIGITAL I/O (A_, EN) |  |  |  |  |  |  |  |
| Input High | $\mathrm{V}_{\mathrm{IH}}$ |  |  | 2.0 |  |  | V |
| Input Low | VIL |  |  |  |  | 0.4 | V |
| Input Logic Current |  |  |  | -100 | 5 | 100 | nA |
| DYNAMIC |  |  |  |  |  |  |  |
| Turn-On Time (Note 5) | ton | $\begin{aligned} & \mathrm{V}_{\text {NO_ }}=2 \mathrm{~V}, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{RL}=300 \Omega \text {, Figure } 2 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 16 | 22 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 24 |  |
| Turn-Off Time (Note 5) | toff | $\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=2 \mathrm{~V}, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, Figure } 2 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 8 | 14 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 16 |  |
| Break-Before-Make Time (Note 5) | tBBM | $\begin{aligned} & V_{N O}=2 \mathrm{~V}, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, Figure } 3 \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 9 |  | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 1 |  |  |  |
| Charge Injection | Q | VGEN $=1.5 \mathrm{~V}, \mathrm{RGEN}=$ | , $\mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$, Figure 4 |  | 2 |  | pC |
| Off-Isolation (Note 6) | VISO | $C_{L}=5 p F, R_{L}=50 \Omega,$ <br> Figure 5 | $\mathrm{f}=10 \mathrm{MHz}$ |  | -57 |  | dB |
|  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | -80 |  |  |
| Crosstalk (Note 7) | VCT | $C_{L}=5 p F, R_{L}=50 \Omega,$ Figure 5 | $\mathrm{f}=10 \mathrm{MHz}$ |  | -52 |  | dB |
|  |  |  | $\mathrm{f}=1 \mathrm{MHz}$ |  | -78 |  |  |

# Fast, Low-Voltage, 4 2 , 4-ChanneI CMOS Analog Multiplexer 

## ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V} / \mathrm{L}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NO_ Off-Capacitance | CNO_(OFF) | $\mathrm{VNO}_{-}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6 | 13 |  | pF |
| COM Off-Capacitance | CCOM(OFF) | $\mathrm{V}_{\text {COM }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6 | 52 |  | pF |
| COM On-Capacitance | C(ON) |  | 68 |  | pF |
| Total Harmonic Distortion | THD | $R \mathrm{~L}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz | 0.018 |  | \% |
| POWER SUPPLY |  |  |  |  |  |
| Positive Supply Current | $1+$ | $\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}+, \mathrm{V}_{\mathrm{IL}}=0$ | 0.001 | 1 | $\mu \mathrm{A}$ |

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet
Note 3: $\Delta R_{O N}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 5: Guaranteed by design.
Note 6: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right)$, where $\mathrm{V}_{\mathrm{COM}}=$ output and $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 7: Between any two switches.

## Typical Operating Characteristics

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer

## Typical Operating Characteristics (continued)

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



ON/OFF-ENABLE TIME vs. TEMPERATURE


ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE


ON/OFF-ENABLE TIME
vs. SUPPLY VOLTAGE


POWER-SUPPLY CURRENT vs. TEMPERATURE


# Fast, Low-Voltage, 4 ${ }^{2}$, 4-ChanneI CMOS Analog Multiplexer 

## Typical Operating Characteristics (continued)

$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)



Pin Description

| PIN | NAME |  |
| :---: | :---: | :--- |
| 1 | A0 | Address Input |
| 2 | NO1 | Normally Open Switch 1 |
| 3 | GND | Ground |
| 4 | NO3 | Normally Open Switch 3 |
| 5 | EN | Enable Logic Input |
| 6 | V+ | Positive Supply Voltage |
| 7 | NO4 | Normally Open Switch 4 |
| 8 | COM | Analog Switch Common Terminal |
| 9 | NO2 | Normally Open Switch 2 |
| 10 | A1 | Address Input |

## Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer

Detailed Description
The MAX4634 is a low-on-resistance, low-voltage analog multiplexer that operates from a +1.8 V to +5.5 V single supply. CMOS switch construction allows processing of analog signals that are within the supply voltage range (GND to $\mathrm{V}+$ ).
To disable all switch channels, drive EN low. All four inputs and COM become high impedance during this state. If the disable feature is not needed, connect EN to $\mathrm{V}+$

## Applications Information

## Power-Supply Sequencing and Overvoltage Protection

 Proper power-supply sequencing is recommended for all CMOS devices. Always apply $V+$ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7 V ) below $\mathrm{V}+$ for D 1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage ( $\mathrm{V}+$ ) must not exceed 6V.Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage.


Figure 1. Overvoltage Protection Using External Blocking Diodes

Test Circuits/Timing Diagrams


Figure 2. Switching Time

# Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer 

Test Circuits/Timing Diagrams (continued)


Figure 3. Break-Before-Make Interval


Figure 4. Charge Injection

# Fast, Low-Voltage, 4 ${ }^{2}$, 4-Channel CMOS Analog Multiplexer 

Test Circuits/Timing Diagrams (continued)


OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
ON-LOSS $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{O U T}}{V_{\text {IN }}}$

Figure 5. Off-Isolation/On-Channel Bandwidth
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" TERMINAL ON EACH SWITCH
ON-LOSS IS MEASURED BETWEEN COM AND "ON" TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED BETWEEN COMA AND COMB TERMINALS ON EACH DEVICE
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

## Chip Information

TRANSISTOR COUNT: 231


Figure 6. Channel Off/On-Capacitance

# Fast, Low-Voltage, 4 ${ }^{2}$ 4-Channel CMOS Analog Multiplexer 



Note: The MAX4634 package does not have an exposed pad.

# Fast, Low-Voltage, 4 4-Channel CMOS Analog Multiplexer 

## NOTES

