Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

Abstract

General Description The MAX4636 is a fast, dual 4Ω single-pole/doublethrow (SPDT) analog switch that operates with supply voltages from +1.8 V to +5.5 V . High switching speeds, 1Ω on-resistance flatness, and low power consumption make this device ideal for audio/video, communications, and battery-operated devices. Containing two independently controllable SPDT switches in a single 10-pin $\mu \mathrm{MAX}$ package, the MAX4636 uses little board space, and its low power consumption ensures minimal impact on your power budget. The analog signal range extends to the supply rails.

Applications
Battery-Powered Equipment
Relay Replacement
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits

Features

PART	TEMP. RANGE	PIN-PACKAGE
MAX $4636 E U B$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

Pin Configuration/Functional Diagram/Truth Table

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	
V+, IN_	-0.3V to +6V
COM_, NC_, NO_ (Note 1) -0.3V to (V+ + 0.3V)	
Continuous Current into Any Termina	$\pm 30 \mathrm{~mA}$
Peak Current into COM_, NC_, NO_ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)..	$. . \pm 100 \mathrm{~mA}$

Note 1: Signals on NO_, NC_, or COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{C O M}$ V_{NO}, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			4.5	
On-Resistance Match Between Channels (Note 3)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}=0 \text { to } \mathrm{V}+ \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.4	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \text { to } \mathrm{V}_{+} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	1	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1.2	
NO_, NC_ Off-Leakage Current (Note 5)	Inc_(OFF), INO_(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		0.3	
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {COM }}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=4.5 \mathrm{~V} \text {, } \\ & 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		0.3	
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} \text { or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		0.3	
DIGITAL I/O (IN1, IN2)							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Leakage Current	$\mathrm{I}_{\mathrm{H},} \mathrm{I}_{\text {LI }}$	$\mathrm{V} \mathbb{N}_{-}=0$ or +5.5 V		-100	5	100	nA

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

ELECTRICAL CHARACTERISTICS—Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC							
Turn-On Time (Note 5)	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V}^{\prime} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure 1a } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		12	14	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$			16	
Turn-Off Time (Note 5)	toFF	$\begin{aligned} & \mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}, \end{aligned}$ Figure 1a	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	6	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
Break-Before-Make Time (Note 5)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega_{-} \mathrm{CL}=35 \mathrm{pF}, \\ & \text { Figure } 1 \mathrm{~b} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		7		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$V_{G E N}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{CL}_{\mathrm{L}}=1.0 \mathrm{nF}$, Figure 2		2			pC
NO_, NC_ Off-Capacitance	CNO_(OFF), CNC_(OFF)	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 3		9			pF
COM_ On-Capacitance	CCOM_(ON)	$V_{\text {COM_ }}=G N D, f=1 \mathrm{MH}$	gure 3		32		pF
Off-Isolation (Note 6)	VISO	$C_{L}=5 p F, R_{L}=50 \Omega, f=10 \mathrm{MHz}$, Figure 4			-52		dB
		$C_{L}=5 p F, R_{L}=50 \Omega, f=1 \mathrm{MHz}$, Figure 4			-65		
Crosstalk (Note 7)	V_{CT}	$C_{L}=5 p F, R_{L}=50 \Omega, f=10 \mathrm{MHz}$, Figure 4			-66		dB
		$C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$, Figure 4			-67		
Total Harmonic Distortion	THD	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\text {NO_ }}=5 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz			0.1		\%
SUPPLY							
Positive Supply Current	$1+$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=0$ or V			0.001	1.0	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{TA}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{C O M}$ V_{NO}, $V_{N C}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}^{-} \text {or } \mathrm{V}_{\mathrm{NC}}^{-} \\ & =0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5	5.5	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			8	
On-Resistance Match Between Channels (Note 3)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+ \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.4	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.5	2	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.5	
NO_, NC_ Off-Leakage Current (Note 5)	$\begin{aligned} & \text { INO_(OFF), } \\ & \text { INC_(OFF) } \end{aligned}$	$\begin{aligned} & V_{+}=3.3 V^{\prime} \mathrm{VCOM}_{C}=1 \mathrm{~V}, 3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		0.3	
COM_ Off-Leakage Current (Note 5)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 3 \mathrm{~V} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		0.3	

Fast, Low-Voltage, Dual 4 Ω SPDT CMOS Analog Switch

ELECTRICAL CHARACTERISTICS—Single +3 V Supply (continued)
$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.8 \mathrm{~V}, \mathrm{TA}^{2}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COM_ On-Leakage Current (Note 5)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} \text {, } \\ & 3 \mathrm{~V} \text {; } \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=1 \mathrm{~V} \text {, } \\ & 3 \mathrm{~V} \text {, or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-0.3		0.3	
DIGITAL I/O (IN1, IN2)							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Leakage Current	$\mathrm{IIH}^{\mathrm{I}} \mathrm{IL}$	$\mathrm{VIN}_{-}=0$ or +5.5 V		-100	5	100	nA
DYNAMIC							
Turn-On Time (Note 5)	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=2 \mathrm{~V} ; \\ & \mathrm{CL}=35 \mathrm{pF}, \mathrm{RL}_{\mathrm{L}}=300 \Omega, \end{aligned}$ Figure 1a	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		14	18	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			20	
Turn-Off Time (Note 5)	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V} \text {; } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{RL}_{\mathrm{L}}=300 \Omega, \\ & \text { Figure 1a } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		6	8	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	
Break-Before-Make Time (Note 5)		$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-},} \mathrm{V}_{\mathrm{NC}_{-}}=2 \mathrm{~V} ; \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$ Figure 1b	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		7		ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{CL}_{\mathrm{L}}=1.0 n \mathrm{~F}$, Figure 2			11		pC
NO_, NC_ Off-Capacitance	CNO_(OFF), CNC_(OFF)	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 3			9		pF
COM On-Capacitance	Ccom (ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$,	gure 3		32		pF
Off-Isolation (Note 6)	VISO	$C_{L}=5 p F, R_{L}=50 \Omega, f=10 \mathrm{MHz}$, Figure 4			-52		dB
		$C_{L}=5 p F, R_{L}=50 \Omega, f=$	MHz , Figure 4		-65		
Crosstalk (Note 7)	$V_{C T}$	$C_{L}=5 \mathrm{pF}, R_{L}=50 \Omega, f=10 \mathrm{MHz}$, Figure 4			-66		dB
		$C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$, Figure 4			-67		
SUPPLY							
Positive Supply Current	$1+$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}$ IN $=0$ or +3			0.001	1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: $\Delta \operatorname{RON}_{\mathrm{ON}}=\operatorname{RON(MAX)}$ - RON(MIN).
Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal ranges.
Note 5: Guaranteed by design.
Note 6: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 7: Between any two switches.

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE ($\mathbf{V}_{+}=+5 \mathrm{~V}$)

TURN-ON/OFF TIME
vs. TEMPERATURE ($\mathbf{V}_{+}=+\mathbf{5 V}$)

TURN-ON/OFF TIME vs. SUPPLY VOLTAGE

LOGIC-LEVEL THRESHOLD
vs. SUPPLY VOLTAGE

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	
1	IN1	Logic Control for Switch 1
2	NC1	Normally Closed Terminal of Switch 1
3	GND	Ground
4	NC2	Normally Closed Terminal of Switch 2
5	IN2	Logic Control Input for Switch 2
6	COM2	Common Terminal of Switch 2
7	NO2	Normally Open Terminal of Switch 2
8	V+	Input Supply Voltage, +1.8V to +5.5V
9	NO1	Normally Open Terminal of Switch 1
10	COM1	Common Terminal of Switch 1

Figure 1a. Switching Time

Figure 1b. Break-Before-Make Interval

Figure 2. Charge Injection

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

Detailed Description

The MAX4636 is a low-on-resistance (RON), low-voltage, dual SPDT analog switch that operates from a +1.8 V to +5.5 V supply. The MAX4636 features very fast switching speed (ton $=14$ ns max, toff $=6$ ns max) and guaranteed break-before-make switching. Its low maximum Ron allows high continuous currents to be switched in a variety of applications.

Applications Information

Figure 3. Channel Off/On-Capacitance

Logic Inputs

The MAX4636 logic inputs (IN1, IN2) can be driven up to +5.5 V , regardless of the voltage on $\mathrm{V}+$. This allows interfacing to 5 V logic signals while operating with a +3.3 V supply voltage without external level translation.

Analog Signal Levels

Analog signals ranging over the entire supply voltage ($\mathrm{V}+$ to GND) can be passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins may be used as either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to less than 30 mA , add a small-signal diode (D1) as shown in Figure 5. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D1), and a diode drop above ground (for D2).

OFF-ISOLATION $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
ON-LOSS $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS
OFF-ISOLATION IS MEASURED BETWEEN COM_ AND "OFF" NO_ OR NC_ TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM_ AND "ON" NO_OR NC_ TERMINAL ON EACH SWITCH
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 4. On-Loss, Off-Isolation, and Crosstalk

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

Figure 5. Overvoltage Protection Using Two External Blocking Diodes

On-resistance increases slightly at low supply voltages Maximum supply voltage $(\mathrm{V}+$) must not exceed +6 V . Adding protection diode D2 causes the logic threshold to be shifted relative to GND. Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 5's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage results.

Chip Information
TRANSISTOR COUNT: 239
PROCESS: CMOS

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

Note: The MAX4636 does not have an exposed pad.

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

NOTES

Fast, Low-Voltage, Dual 4Ω SPDT CMOS Analog Switch

NOTES

