

# HMC393MS8G

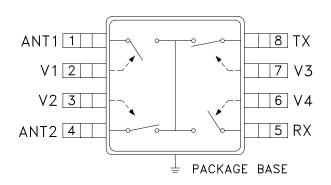
### GaAs MMIC DPDT DIVERSITY SWITCH, 5.0 - 6.0 GHz

#### **Typical Applications**

This switch is ideal for use as a DPDT Diversity Switch for 5.0 - 6.0 GHz applications:

- HiperLAN
- UNII

#### **Features**


Low Insertion Loss: 1.2 dB @ 5.5 GHz

High IP3: 49 dBm

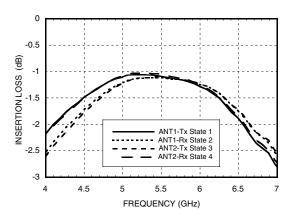
Positive Control: 0/+5V

Ultra Small MSOP8G Package: 14.8 mm<sup>2</sup>

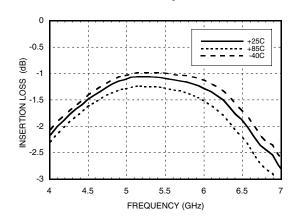
#### Functional Diagram



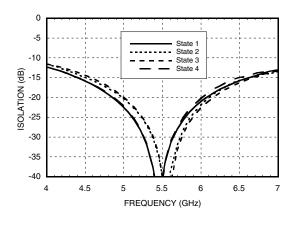
#### General Description


The HMC393MS8G is a low cost C-band DPDT switch that operates between 5.0 and 6.0 GHz. This switch can operate as an integrated antenna diversity and transmit/receive switch for the HyperLAN and UNII radio platforms. The design provides 20 dB of isolation between antennas and between Tx and Rx ports. The switch features 1.2 dB insertion loss and high power handling capability. Switch state is controlled using four CMOS level control voltage lines.

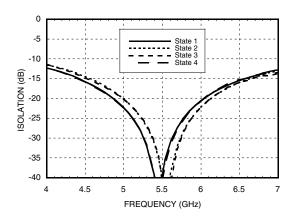
### Electrical Specifications, $T_A = +25^{\circ}$ C, Vctl = 0/+5 Vdc, 50 Ohm System


| Parameter                                                                 | Frequency     | Min. | Тур.     | Max. | Units    |
|---------------------------------------------------------------------------|---------------|------|----------|------|----------|
| Insertion Loss                                                            | 5.0 - 6.0 GHz |      | 1.2      | 2.0  | dB       |
| Isolation                                                                 | 5.0 - 6.0 GHz | 15   | 20       |      | dB       |
| Return Loss (On State, Any Port)                                          | 5.0 - 6.0 GHz | 13   | 20       |      | dB       |
| Input Power for 0.1 dB Compression                                        | 5.0 - 6.0 GHz | 27   | 30       |      | dBm      |
| Input Third Order Intercept<br>(Two-Tone Input Power = +22 dBm Each Tone) | 5.0 - 6.0 GHz | 45   | 49       |      | dBm      |
| Switching Characteristics                                                 | 5.0 - 6.0 GHz |      |          |      |          |
| tRISE / tFALL (10/90% RF)<br>tON / tOFF (50% CTL to 10/90% RF)            |               |      | 11<br>22 |      | ns<br>ns |

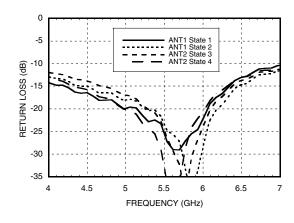



#### Insertion Loss

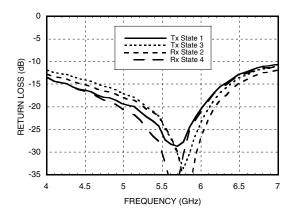



#### Insertion Loss vs. Temperature



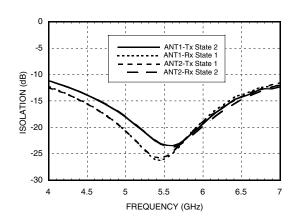

#### Isolation, Tx & Rx



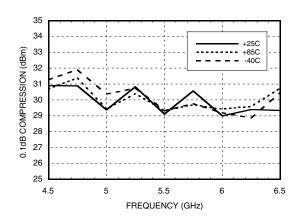

#### Isolation, ANT1 & ANT2



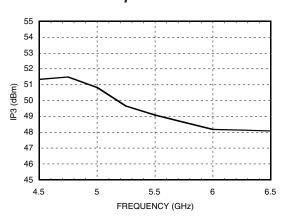
#### Return Loss, ANT1 & ANT2




#### Return Loss, Tx & Rx







#### Isolation, ANT1 / ANT2 - Tx / Rx



Input 0.1 dB Compression Point



Input IP3 \*



### **Control Voltages**

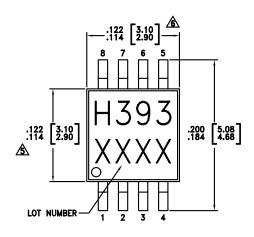
| State | Bias Condition                |  |
|-------|-------------------------------|--|
| Low   | 0 to +0.5 Vdc @ 10 uA Typ.    |  |
| High  | +5.0 to +6.5 Vdc @ 10 uA Typ. |  |

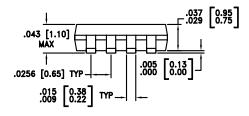
#### Truth Table

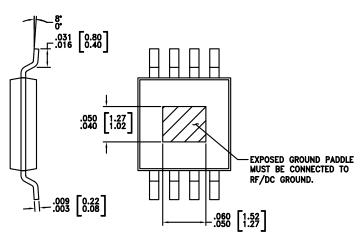
| Path      | V1   | V2   | V3   | V4   | State |
|-----------|------|------|------|------|-------|
| ANT1 - Tx | High | Low  | High | Low  | 1     |
|           |      |      |      |      | '     |
| ANT1 - Rx | High | Low  | Low  | High | 2     |
| ANT2 - Tx | Low  | High | High | Low  | 3     |
| ANT2 - Rx | Low  | High | Low  | High | 4     |

<sup>\*</sup> Two-tone input power = +22 dBm each tone, 1 MHz spacing.




#### Absolute Maximum Ratings


| RF Input Power VctI = 0/+5V            | +33 dBm          |
|----------------------------------------|------------------|
| Control Voltage Range (V1, V2, V3, V4) | -0.5 to +7.5 Vdc |
| Storage Temperature                    | -65 to +150 °C   |
| Operating Temperature                  | -40 to +85 °C    |

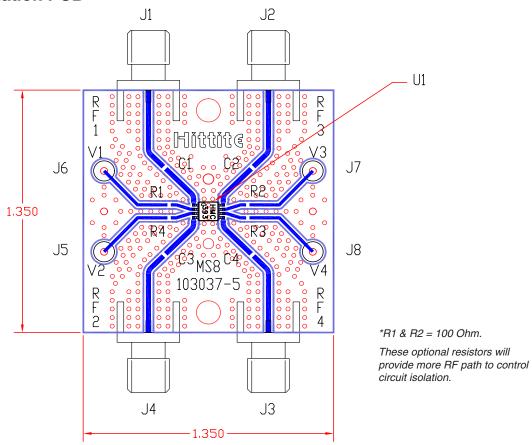

Caution: Do not "Hot Switch" power levels greater than +23 dBm (Vctl = 0/+5 Vdc).

DC blocking capacitors are required at ports ANT1, ANT2, Tx, Rx. Choose value for lowest frequency of operation.

#### **Outline Drawing**








#### NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.



#### **Evaluation PCB**



#### List of Material

| Item                                  | Description                                                                                          |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------|--|
| J1 - J4                               | PC Mount SMA Connector                                                                               |  |
| J5 - J8                               | 5 - J8 DC Pin                                                                                        |  |
| C1 - C4                               | Chip Capacitor, 0402 Pkg. Choose value for lowest frequency of operation. 100 pF is provided on PCB. |  |
| R1 - R2                               | - R2 100 Ohm Resistor, 0402 Pkg.                                                                     |  |
| U1                                    | U1 HMC393MS8G DPDT Diversity Switch                                                                  |  |
| PCB*                                  | 103037 Evaluation PCB 1.5"x1.5"                                                                      |  |
| * Circuit Board Material: Rogers 4350 |                                                                                                      |  |

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown above is available from Hittite upon request.



Notes: