8Kx8 Power-Switched and Reprogrammable PROM ### **Features** - CMOS for optimum speed/power - Windowed for reprogrammability - High speed - 20 ns (commercial) - -25 ns (military) - · Low power - 660 mW (commercial) - -770 mW (military) - Super low standby power (7C261) - -Less than 220 mW when deselected - Fast access: 20 ns - EPROM technology 100% programmable - · Slim 300-mil or standard 600-mil packaging available - 5V \pm 10% V_{CC}, commercial and military - Capable of withstanding greater than 2001V static discharge - TTL-compatible I/O - Direct replacement for bipolar PROMs ### **Functional Description** The CY7C261, CY7C263, and CY7C264 are high-performance 8192-word by 8-bit CMOS PROMs. When deselected, the 7C261 automatically powers down into a low-power standby mode. It is packaged in a 300-mil-wide package. The 7C263 and 7C264 are packaged in 300-mil-wide and 600-mil-wide packages respectively, and do not power down when deselected. The reprogrammable packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms. The CY7C261, CY7C263, and CY7C264 are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits. Read is accomplished by placing an active LOW signal on $\overline{\text{CS}}$. The contents of the memory location addressed by the address line (A_0-A_{12}) will become available on the output lines (O_0-O_7) . For an 8K x 8 Registered PROM, see the CY7C265. # **Selection Guide** | | | 7C261-20
7C263-20
7C264-20 | 7C261-25
7C263-25
7C264-25 | 7C261-35
7C263-35
7C264-35 | 7C261-45
7C263-45
7C264-45 | 7C261-55
7C263-55
7C264-55 | |------------------------------|------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Maximum Access Time (ns) | | 20 | 25 | 35 | 45 | 55 | | Maximum Operating | Commercial | 120 | 120 | 100 | 100 | 100 | | Current (mA) | Military | | 140 | 120 | 120 | 120 | | Maximum Standby | Commercial | 40 | 40 | 30 | 30 | 30 | | Current (mA)
(7C261 only) | Military | | 40 | 30 | 30 | 30 | # **Maximum Ratings** | Latch-Up Current | >200 mA | |------------------|---------------------------| | UV Exposure | 7258 Wsec/cm ² | # **Operating Range** | Range | Ambient
Temperature | V _{CC} | |---------------------------|------------------------|-----------------| | Commercial | 0°C to + 70°C | 5V ± 10% | | Industrial ^[1] | -40°C to + 85°C | 5V ± 10% | | Military ^[2] | –55°C to + 125°C | 5V ± 10% | - See the Ordering Information section regarding industrial teperature range specification. T_A is the "instant on" case temperature. # **Electrical Characteristics** Over the Operating Range $^{[3,4]}$ | | | | | 7C263 | -20, 25
-20, 25
-20, 25 | 7C263-3 | 5, 45, 55
5, 45, 55
5, 45, 55 | | |------------------|---|---|-------|-------|-------------------------------|---------|-------------------------------------|------| | Parameter | Description | Test Condition | ns | Min. | Max. | Min. | Max. | Unit | | V _{OH} | Output HIGH Voltage | $V_{CC} = Min., I_{OH} = -2$ | .0 mA | 2.4 | | | | V | | V _{OH} | Output HIGH Voltage | $V_{CC} = Min., I_{OH} = -4$ | .0 mA | | | 2.4 | | V | | V _{OL} | Output LOW Voltage | $V_{CC} = Min., I_{OL} = 8 n$
(6 mA Mil) | nA | | 0.4 | | | V | | V _{OL} | Output LOW Voltage | $V_{CC} = Min., I_{OL} = 16$ | mA | | | | 0.4 | V | | V _{IH} | Input HIGH Level | | | 2.0 | | 2.0 | | V | | V _{IL} | Input LOW Level | | | | 0.8 | | 0.8 | V | | I _{IX} | Input Current | $GND \le V_{IN} \le V_{CC}$ | | -10 | +10 | -10 | +10 | μΑ | | V_{CD} | Input Diode Clamp Voltage | | | No | te 4 | No | te 4 | | | I _{OZ} | Output Leakage Current | GND ≤V _{OUT} ≤ V _{CC} | Com'l | -10 | +10 | -10 | +10 | μΑ | | | | Output Disabled | Mil | -40 | +40 | -40 | +40 | μΑ | | Ios | Output Short Circuit Current ^[5] | $V_{CC} = Max., V_{OUT} = G$ | ND | -20 | -90 | -20 | -90 | mΑ | | I _{CC} | Power Supply Current | V _{CC} = Max., | Com'l | | 120 | | 100 | mΑ | | | | f = Max.
I _{OUT} = 0 mA | Mil | | 140 | | 120 | | | I _{SB} | Standby Supply Current (7C261) | $V_{CC} = Max.,$ | Com'l | | 40 | | 30 | mΑ | | | | CŠ≥V _{IH} | Mil | | 40 | | 30 | | | V _{PP} | Programming Supply Voltage | | • | 12 | 13 | 12 | 13 | V | | I _{PP} | Programming Supply Current | | | | 50 | | 50 | mA | | V _{IHP} | Input HIGH Programming Voltage | | | 4.75 | | 4.75 | | V | | V _{ILP} | Input LOW Programming Voltage | | | | 0.4 | | 0.4 | V | ### Notes: See the last page of this specification for Group A subgroup testing information. See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.] # Capacitance^[4] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|------------------------------------|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C$, $f = 1$ MHz, | 10 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 5.0V$ | 10 | pF | ### AC Test Loads and Waveforms[4] ### Test Load for -20 through -30 speeds ### Test Load for -35 through -55 speeds Equivalent to: THÉVENIN EQUIVALENT OUTPUT \bigcirc $R_{TH} 100\Omega$ \bigcirc 2.0V # Switching Characteristics Over the Operating Range [2,3,4] | | | 7C26 | 61-20
63-20
64-20 | 7C26 | 61-25
63-25
64-25 | 7C26 | 61-35
63-35
64-35 | 7C26 | 61-45
63-45
64-45 | 7C26 | 61-55
63-55
64-55 | | |--------------------|--|------|-------------------------|------|-------------------------|------|-------------------------|------|-------------------------|------|-------------------------|------| | Parameter | Description | Min. | Max. | Unit | | t _{AA} | Address to Output Valid | | 20 | | 25 | | 35 | | 45 | | 55 | ns | | t _{HZCS1} | Chip Select Inactive to High Z (7C263 and 7C264) | | 12 | | 12 | | 20 | | 30 | | 35 | ns | | t _{HZCS2} | Chip Select Inactive to High Z (7C261) | | 20 | | 25 | | 35 | | 45 | | 55 | ns | | t _{ACS1} | Chip Select Active to Output Valid (7C263 and 7C264) | | 12 | | 12 | | 20 | | 30 | | 35 | ns | | t _{ACS2} | Chip Select Active to Output Valid (7C261) | | 20 | | 25 | | 35 | | 45 | | 55 | ns | | t _{PU} | Chip Select Active to Power-Up (7C261) | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{PD} | Chip Select Inactive to Power-Down (7C261) | | 20 | | 25 | | 35 | | 45 | | 55 | ns | ### Switching Waveforms [4] ### **Erasure Characteristics** Wavelengths of light less than 4000 angstroms begin to erase the devices in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time. The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of 25 Wsec/cm2. For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time wouldbe approximately 35 minutes. The 7C261 or 7C263 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage. # **Operating Modes** ### Read Read is the normal operating mode for programmed device. In this mode, all signals are normal TTL levels. The PROM is addressed with a 13-bit field, a chip select, (active LOW), is applied to the $\overline{\text{CS}}$ pin, and the contents of the addressed location appear on the data out pins. ### Program, Program Inhibit, Program Verify These modes are entered by placing a high voltage V_{PP} on pin 19, with pins 18 and 20 set to V_{ILP} In this state, pin 21 becomes a latch signal, allowing the upper 5 address bits to be latched into an onboard register, pin 22 becomes an active LOW program (\overline{PGM}) signal and pin 23 becomes an active LOW verify (\overline{VFY}) signal. Pins 22 and 23 should never be active LOW at the same time. The PROGRAM mode exists when \overline{PGM} is LOW, and \overline{VFY} is HIGH. The verify mode exists when the reverse is true, \overline{PGM} HIGH and \overline{VFY} LOW and the program inhibit mode is entered with both \overline{PGM} and \overline{VFY} HIGH. Program inhibit is specifically provided to allow data to be placed on and removed from the data pins without conflict Table 1. Mode Selection | | | Pin Function ^[6, 7] | | | | | | | | |---------|------------------------|--------------------------------|-----------------|------------------|----------------|------------------|------------------|---------------------------------|--| | | Read or Output Disable | A ₁₂ | A ₁₁ | A ₁₀ | A ₉ | A ₈ | CS | O ₇ - O ₀ | | | Mode | Program | NA | V _{PP} | LATCH | PGM | VFY | CS | D ₇ - D ₀ | | | Read | | A ₁₂ | A ₁₁ | A ₁₀ | A ₉ | A ₈ | V _{IL} | O ₇ - O ₀ | | | Output | Disable | A ₁₂ | A ₁₁ | A ₁₀ | A ₉ | A ₈ | V _{IH} | High Z | | | Progra | m | V _{ILP} | V _{PP} | V _{ILP} | $V_{\rm ILP}$ | V _{IHP} | V _{ILP} | D ₇ - D ₀ | | | Progra | m Inhibit | V _{ILP} | V _{PP} | V _{ILP} | V_{IHP} | V _{IHP} | V _{ILP} | High Z | | | Progra | m Verify | V _{ILP} | V_{PP} | V_{ILP} | V_{IHP} | V_{ILP} | V_{ILP} | O ₇ - O ₀ | | | Blank (| Check | V _{ILP} | V_{PP} | V_{ILP} | V_{IHP} | V_{ILP} | V_{ILP} | O ₇ - O ₀ | | ### Notes: - 6. X = "don't care" but not to exceed $V_{CC} \pm 5\%$. - 7. Addresses A_8 - A_{12} must be latched through lines A_0 - A_4 in programming modes. Figure 1. Programming Pinouts. # **Programming Information** Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative. # **Typical DC and AC Characteristics** # Ordering Information^[8] | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|---------------|---|---------------------------------------|--------------------| | 20 | CY7C261-20JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C261-20PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C261-20WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 25 | CY7C261-25JC | C261-25JC J64 28-Lead Plastic Leaded Chip Carrier | | Commercial | | | CY7C261-25PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C261-25WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C261-25DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C261-25LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C261-25QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C261-25TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C261-25WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 35 | CY7C261-35JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C261-35PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C261-35WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C261-35DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C261-35LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C261-35QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C261-35TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C261-35WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 45 | CY7C261-45JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C261-45PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C261-45WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C261-45DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C261-45LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C261-45QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C261-45TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C261-45WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 55 | CY7C261-55JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C261-55PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C261-55WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C261-55DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C261-55LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C261-55QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C261-55TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C261-55WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability. # $\label{eq:continued} \textbf{Ordering Information}^{[8]} \, (\text{continued})$ | Speed (ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |------------|---------------|-----------------|---------------------------------------|--------------------| | 20 | CY7C263-20JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C263-20PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C263-20WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 25 | CY7C263-25JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C263-25PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C263-25WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C263-25DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C263-25LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C263-25QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C263-25TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C263-25WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 35 | CY7C263-35JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C263-35PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C263-35WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C263-35DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C263-35LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C263-35QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C263-35TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C263-35WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 45 | CY7C263-45JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C263-45PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C263-45WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C263-45DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C263-45LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C263-45QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C263-45TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C263-45WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | 55 | CY7C263-55JC | J64 | 28-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C263-55PC | P13 | 24-Lead (300-Mil) Molded DIP | | | | CY7C263-55WC | W14 | 24-Lead (300-Mil) Windowed CerDIP | | | | CY7C263-55DMB | D14 | 24-Lead (300-Mil) CerDIP | Military | | | CY7C263-55LMB | L64 | 28-Square Leadless Chip Carrier | | | | CY7C263-55QMB | Q64 | 28-Pin Windowed Leadless Chip Carrier | | | | CY7C263-55TMB | T73 | 24-Lead Windowed Cerpack | | | | CY7C263-55WMB | W14 | 24-Lead (300-Mil) Windowed CerDIP | | # Ordering Information^[8] (continued) | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|---------------|-----------------|-----------------------------------|--------------------| | 20 | CY7C264-20DC | D12 | 24-Lead (600-Mil) CerDIP | Commercial | | | CY7C264-20PC | P11 | 24-Lead (600-Mil) Molded DIP | | | | CY7C264-20WC | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | 25 | CY7C264-25DC | D12 | 24-Lead (600-Mil) CerDIP | Commercial | | | CY7C264-25PC | P11 | 24-Lead (600-Mil) Molded DIP | | | | CY7C264-25WC | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | | CY7C264-25DMB | D12 | 24-Lead (600-Mil) CerDIP | Military | | | CY7C264-25WMB | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | 35 | CY7C264-35DC | D12 | 24-Lead (600-Mil) CerDIP | Commercial | | | CY7C264-35PC | P11 | 24-Lead (600-Mil) Molded DIP | | | | CY7C264-35WC | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | | CY7C264-35DMB | D12 | 24-Lead (600-Mil) CerDIP | Military | | | CY7C264-35WMB | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | 45 | CY7C264-45DC | D12 | 24-Lead (600-Mil) CerDIP | Commercial | | | CY7C264-45PC | P11 | 24-Lead (600-Mil) Molded DIP | | | | CY7C264-45WC | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | | CY7C264-45DMB | D12 | 24-Lead (600-Mil) CerDIP | Military | | | CY7C264-45WMB | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | 55 | CY7C264-55DC | D12 | 24-Lead (600-Mil) CerDIP | Commercial | | | CY7C264-55PC | P11 | 24-Lead (600-Mil) Molded DIP | | | | CY7C264-55WC | W12 | 24-Lead (600-Mil) Windowed CerDIP | | | | CY7C264-55DMB | D12 | 24-Lead (600-Mil) CerDIP | Military | | | CY7C264-55WMB | W12 | 24-Lead (600-Mil) Windowed CerDIP | | # MILITARY SPECIFICATION Group A Subgroup Testing # **DC Characteristics** | Parameter | Subgroups | |--------------------------------|-----------| | V _{OH} | 1, 2, 3 | | V _{OL} | 1, 2, 3 | | V _{IH} | 1, 2, 3 | | V _{IL} | 1, 2, 3 | | I _{IX} | 1, 2, 3 | | I _{OZ} | 1, 2, 3 | | I _{CC} | 1, 2, 3 | | I _{SB} ^[9] | 1, 2, 3 | # **Switching Characteristics** | Parameter | Subgroups | |-----------------------------------|-----------------| | t _{AA} | 7, 8, 9, 10, 11 | | t _{ACS1} ^[10] | 7, 8, 9, 10, 11 | | t _{ACS2} [9] | 7, 8, 9, 10, 11 | ### Notes 7C261 only. 7C263 and 7C264 only. Document #: 38-00005-J # **Package Diagrams** # **24-Lead (600-Mil) CerDIP D12** MIL-STD-1835 D-3 Config. A **24-Lead (300-Mil) CerDIP D14**MIL-STD-1835 D-9 Config. A ### 28-Lead Plastic Leaded Chip Carrier J64 28-Square Leadless Chip Carrier L64 MIL-STD-1835 C-4 # Package Diagrams (continued) # 28-Pin Windowed Leadless Chip Carrier Q64 MIL-STD-1835 C-4 ### 24-Lead (600-Mil) Molded DIP P11 # Package Diagrams (continued) ### 24-Lead (300-Mil) Molded DIP P13/P13A ### 24-Lead Windowed Cerpack T73 ### Package Diagrams (continued) ### 24-Lead (600-Mil) Windowed CerDIP W12 MIL-STD-1835 D-3 Config.A ### 24-Lead (300-Mil) Windowed CerDIP W14 MIL-STD-1835 D-9 Config.A © Cypress Semiconductor Corporation, 1996. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.