TDA7565

QUAD POWER AMPLIFIER WITH BUILT-IN VOLTAGE CONVERTER

PRODUCT PREVIEW

■ DMOS POWER OUTPUT

- NON-SWITCHING HI-EFFICIENCY AMPLIFIER
■ SWITCHING HIGH EFFICIENCY VOLTAGE CONVERTER
■ HIGH OUTPUT POWER CAPABILITY 4x60W EIAJ/4 Ω
- FULL I ${ }^{2}$ C BUS DRIVING:
- ST-BY
- INDEPENDENT FRONT/REAR SOFT PLAY/MUTE
- SELECTABLE GAIN 26dB - 12dB (FOR LOW NOISE LINE OUTPUT FUNCTION)
- HIGH EFFICIENCY ENABLE/DISABLE
- VOLTAGE CONVERTER ENABLE/DISABLE
- REGULATED VOLTAGE SELECTION
- SWITCHING FREQUENCY SELECTION
- HARDWARE MUTE FUNCTION
- FULL FAULT PROTECTION

■ DC OFFSET DETECTION
■ FOUR INDEPENDENT SHORT CIRCUIT PROTECTION

- CLIPPING DETECTOR WITH SELECTABLE THRESHOLD ($1 \% / 10 \%$) VIA $I^{2} \mathrm{C}$ BUS

```
MULTIPOWER BCD TECHNOLOGY
```

MOSFET OUTPUT POWER STAGE

FLEXIWATT27

ORDERING NUMBER: TDA7565

DESCRIPTION

The TDA7565 is a new BCD technology QUAD BRIDGE type of car radio amplifier in Flexiwatt27 package specially intended for car radio applications. Thanks to the DMOS output stage the TDA7565 has a very low distortion allowing a clear powerful sound. The built-in voltage converter control block assures a very high output power with an extremely low number of added components.The dissipated power under average listening condition is alligned to the conventional solutions (4x40W).

BLOCK DIAGRAM

This is preliminary information on a new product now in development. Details are subject to change without notice

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {opc OFF }}$	Operating Supply Voltage , converter OFF	18	V
$\mathrm{V}_{\text {opc }} \mathrm{ON}$	Operating Supply Voltage , converter ON	25	V
V_{S}	DC Supply Voltage	28	V
$\mathrm{V}_{\text {peak }}$	Peak Supply Voltage (for $\mathrm{t}=50 \mathrm{~ms}$)	50	V
$\mathrm{V}_{\text {CK }}$	CK pin Voltage	6	V
$V_{\text {DATA }}$	Data Pin Voltage	6	V
lo	Output Peak Current (not repetitive t $=100 \mu \mathrm{~s}$)	8	A
Io	Output Peak Current (repetitive f $>10 \mathrm{~Hz}$)	6	A
$\mathrm{P}_{\text {tot }}$	Power Dissipation $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	80	W
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Description	Value	Unit
$R_{\text {th } j \text {-case }}$	Thermal Resistance Junction-case	Max.	1
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

PIN CONNECTION

ELECTRICAL CHARACTERISTICS
(Refer to the test circuit, $V_{S}=13.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; f=1 \mathrm{KHz}$; Voltage converter Disabled (VCoff); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
POWER AMPLIFIER						
V_{S}	Supply Voltage Range		8		18	V
I_{d}	Total Quiescent Drain Current			180	300	mA
I_{d}	Total Quiescent Drain Current ($\mathrm{VC}_{\text {on }}$)			TBD		mA
Po	$\begin{aligned} & \hline \text { Output Power } \\ & \left(\mathrm{VC} C_{\text {off }}\right. \\ & \mathrm{V}=14.4 \mathrm{~V} \end{aligned}$	EIAJ (V $\mathrm{V}_{\mathrm{S}}=13.7 \mathrm{~V}$)		35		W
		$\begin{aligned} & \hline \text { THD }=10 \% \\ & \text { THD }=1 \% \end{aligned}$		$\begin{aligned} & 25 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline W \\ & w \end{aligned}$
Po	$\begin{aligned} & \text { Output Power } \\ & \left(\mathrm{VC} \mathrm{Con}^{\prime}\right) \\ & \mathrm{V}=14.4 \mathrm{~V} \end{aligned}$	EIAJ ($\mathrm{V}_{S}=13.7 \mathrm{~V}$)		60		W
		$\begin{aligned} & \hline \text { THD }=10 \% \\ & \text { THD }=1 \% \end{aligned}$		$\begin{aligned} & 40 \\ & 31 \end{aligned}$		$\begin{aligned} & \hline W \\ & W \end{aligned}$
THD	Total Harmonic Distortion	PO = 1W to 12W; STDMODE HE MODE; $\mathrm{PO}=1-2 \mathrm{~W}$ HE MODE; $\mathrm{PO}=4-12 \mathrm{~W}$		$\begin{gathered} \hline 0.03 \\ 0.03 \\ 0.1 \end{gathered}$		$\begin{aligned} & \text { \% } \\ & \% \\ & \% \end{aligned}$
		PO $=1-12 \mathrm{~W}, \mathrm{f}=10 \mathrm{kHz}$		0.15	0.5	\%
$\mathrm{C}_{\text {T }}$	Cross Talk	$\mathrm{f}=1 \mathrm{KHz}$ to $10 \mathrm{KHz}, \mathrm{R}_{\mathrm{G}}=600 \Omega$	50	55		dB
RIN	Input Impedance		60	100	130	$\mathrm{K} \Omega$
Gv1	Voltage Gain 1		25.5	26	26.5	dB
$\Delta \mathrm{G}_{\mathrm{V} 1}$	Voltage Gain Match 1		-1		1	dB
GV2	Voltage Gain 2		11.5	12	12.5	dB
$\Delta \mathrm{G}_{\mathrm{V} 2}$	Voltage Gain Match 2		-1		1	dB
$\mathrm{E}_{\mathrm{IN} 1}$	Output Noise Voltage 1	$\begin{aligned} & \begin{array}{l} \mathrm{R}_{\mathrm{g}}=600 \Omega ; \mathrm{G}_{\mathrm{v}}=26 \mathrm{~dB} \\ \text { filter } 20 \mathrm{~Hz} \text { to } 22 \mathrm{kHz} \end{array} \end{aligned}$		60	100	$\mu \mathrm{V}$
EIN2	Output Noise Voltage 2	$\mathrm{R}_{\mathrm{g}}=600 \Omega ; \mathrm{Gv}=26 \mathrm{~dB}$ $\text { filter } 20 \mathrm{~Hz} \text { to } 12 \mathrm{kHz}$		15	20	$\mu \mathrm{V}$
SVR	Supply Voltage Rejection	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} ; \mathrm{V}_{\mathrm{r}}=1 \mathrm{Vpk} ; \\ & \mathrm{R}_{\mathrm{g}}=600 \Omega \end{aligned}$	50	60		dB
BW	Power Bandwidth	(-3dB)	75			KHz
$\mathrm{A}_{\text {SB }}$	Stand-by Attenuation		70	100		dB
ISB	Stand-by Current				100	$\mu \mathrm{A}$
A_{M}	Mute Attenuation		70	90		dB
VOS	Offset Voltage	Mute \& Play	-100		100	mV
$\mathrm{V}_{\text {AM }}$	Min. Supply Voltage Threshold		6.5	7	7.5	V
	Slew Rate		1.5			V/us
ToN	Turn on Delay	D2/D1 (IB1) 0 to 1		10	20	ms
TofF	Turn off Delay	D2/D1 (IB1) 1 to 0		10	20	ms
	Thermal Foldback Junction Temperature		155	170	185	${ }^{\circ} \mathrm{C}$
CDTHD	Clip Det THD level	D0 (IB1) $=0$	0	1	2	\%
		D0 (IB1) = 1	5	10	15	\%
Vo	Offset Detection	$\begin{aligned} & \text { Power Amplifier = play } \\ & \text { AC Input = } 0 \end{aligned}$	± 1.5	± 2	± 2.5	V
Thw	Thermal Warning			165		${ }^{\circ} \mathrm{C}$
$\mathrm{I}^{2} \mathrm{C}$ BUS	NTERFACE					
$\mathrm{f}_{\text {SCL }}$	Clock Frequency				400	KHz
V_{IL}	Input Low Voltage				1.5	V
V_{IH}	Input High Voltage		2.3			V

ELECTRICAL CHARACTERISTICS (continua)
(Refer to the test circuit, $\mathrm{V}_{\mathrm{S}}=13.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{KHz}$; Voltage converter Disabled (VCoff); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {Min(pin27) }}$	Mute in Threshold Voltage	Amp. Mute			1.5	V
$\mathrm{V}_{\text {Mout(pin27) }}$	Mute out Threshold Voltage		3.5			V
$\left.A_{M(p i n} 27\right)$	Mute Attenuation		80	90		
VOLTAGE CONVERTER						
Vcc1, Vcc2	Converter Output Voltage $(\mathrm{VC}=\mathrm{ON})$	$\begin{aligned} & V_{S}=14 \mathrm{~V} \\ & \text { D3 (IB2) }=0 ; \mathrm{D} 6(\text { IB2 })=0 \\ & \text { D3 (IB2) }=1 ; \mathrm{D} 6(\text { IB2 })=0 \\ & \text { D3 (IB2) }=0 ; \mathrm{D} 6(\text { IB2 })=1 \\ & \text { D3 (IB2) }=1 ; \mathrm{D} 6(\text { IB2 })=1 \end{aligned}$		$\begin{gathered} 15 \\ 16.5 \\ 17.5 \\ 18.5 \end{gathered}$		V V V V
Fs	Voltage Converter Switching Frequency	$\begin{aligned} & \hline \text { D6 (IB1) }=0 ; \text { D7 (IB1) }=0 \\ & \text { D6 (IB1) }=1 ; \text { D7 (IB1) }=0 \\ & \text { D6 (IB1) }=0 ; \text { D7 (IB1) }=1 \\ & \text { D6 (IB1) }=1 ; \text { D7 (IB1) }=1 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 150 \\ & 260 \\ & 400 \end{aligned}$		$\begin{aligned} & \hline \mathrm{kHz} \\ & \mathrm{kHzz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Vmgl	Mos Gate Output Low Voltage	$10=250 \mathrm{~mA}$			1	V
Vmgh	Mos Gate Output High Voltage	$10=20 \mathrm{~mA}$		10.5		V
		$10=200 \mathrm{~mA}$		10		V
Vmgclamp	Mos Gate Output Clamp Voltage	$10=5 \mathrm{~mA}$		TBD		V
tf	Fall Time	$\mathrm{Co}=1 \mathrm{nF}$		20		ns
tr	Rise Time	$\mathrm{Co}=1 \mathrm{nF}$		50		ns
Vmgl ($\mathrm{VC}_{\text {off }}$)	Mos Gate Output Voltage with Voltage Converter Disabled	$1 \mathrm{l}=5 \mathrm{~mA}$			0.5	V

Figure 1. Demoboard Schematic

$\mathrm{I}^{2} \mathrm{C}$ BUS INTERFACE

Data transmission from microprocessor to the TDA7565 and viceversa takes place through the 2 wires $I^{2} C$ BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

Data Validity

As shown by fig. 2, the data on the SDA line must be stable during the high period of the clock.
The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown by fig. 3 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.
The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

Acknowledge

The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 22). The receiver** the acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDAline is stable LOW during this clock pulse.

* Transmitter
master ($\mu \mathrm{P}$) when it writes an address to the TDA7565
slave (TDA7565) when the $\mu \mathrm{P}$ reads a data byte from TDA7565
** Receiver
slave (TDA7565) when the $\mu \mathrm{P}$ writes an address to the TDA7565
master ($\mu \mathrm{P}$) when it reads a data byte from TDA7565
Figure 2. Data Validity on the $I^{2} C$ BUS

Figure 3.

Figure 4.

SOFTWARE SPECIFICATIONS

All the functions of the TDA7565 are activated by $I^{2} \mathrm{C}$ interface.
The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from $\mu \mathrm{P}$ to TDA7565) or read instruction (from TDA7565 to μ P).

D7	Address bit
D6	Address bit
D5	Address bit
D4	Address bit
D3	Address bit
D2	Address bit
D1	Address bit
D0(R/W)	Read/Write bit $0=$ Write instruction $1=$ read instruction

If R/W $=0$, the $\mu \mathrm{P}$ sends 2 "Instruction Bytes": IB1 and IB2.
IB1

D7	Sel Freq Switch 1
D6	Sel Freq Switch 2
D5	Offset Detection start (D5 = 1) Offset Detection stop (D5 = 0) (off)
D4	$\begin{aligned} & \text { Front Channel } \\ & \text { Gain }=26 \mathrm{~dB}(\mathrm{D} 4=0) \\ & \text { Gain }=12 \mathrm{~dB}(\mathrm{D} 4=1) \end{aligned}$
D3	$\begin{aligned} & \text { Rear Channel } \\ & \text { Gain }=26 \mathrm{~dB}(\mathrm{D} 3=0) \\ & \text { Gain }=12 \mathrm{~dB}(\mathrm{D} 3=1) \end{aligned}$
D2	Mute front channels (D2 = 0) Unmute front channels (D2 = 1)
D1	Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1)
D0	$\begin{aligned} & \hline \text { CD 1\% (D0 = 0) } \\ & \text { CD 10\% (D0 = 1) } \end{aligned}$

IB2

D7	Voltage Converter Enabled (D7 = 1) Voltage Converter Disabled (D7 = 0)
D6	Regulated voltage selection 1
D5	Test Speed
D4	Stand-by on - Amplifier not working - (D4 = 0) Stand-by off - Amplifier working - (D4 = 1)
D3	Regulated voltage selection 0)
D2	To be forced to "Level 1"
D1	Right Channel Power amplifier working in standard mode (D1 $=0)$ Power amplifier working in HiEff mode(D1 = 1)
D0	Left Channel Power amplifier working in standard mode (D0 $=0)$ Power amplifier working in HiEff mode(D0 $=1)$

DB1

D7	Thermal Warning
D6	X
D5	X
D4	X
D3	X
D2	Offset (LF)
D1	Short Circuit Protection (CH1)
D0	X

DB2

D7	Off Status
D6	X
D5	Clip Detector Output
D4	X
D3	X
D2	Offset (LR)
D1	Short Circuit Protection (CH2)
D0	X

DB3

D7	St-By Status
D6	X
D5	X
D4	X
D3	X
D2	Offset (RF)
D1	Short Circuit Protection (CH3)
D0	X

DB4

D7	X
D6	X
D5	X
D4	X
D3	X
D2	Offset (RR)
D1	Short Circuit Protection (CH4)
D0	X

Examples of bytes sequence

1 - Turn-On of the power amplifier with 26 dB gain, mute on, diagnostic defeat, HighEff mode, voltage converter disabled.

Start	Address byte with D0 $=0$	ACK	IB1	ACK	IB2	ACK	STOP

2 - Turn-Off of the power amplifier

Start	Address byte with D0 $=0$	ACK	IB1	ACK	IB2	ACK	STOP

4- Offset detection procedure start

Start	Address byte with D0 $=0$	ACK	IB1	ACK	IB2	ACK	STOP

4 - Offset detection procedure stop and reading operation.

Start	Address byte with D0 $=1$	ACK	DB1	STOP

■ The purpose of this test is to check if a D.C. offset (2 V typ.) is present on the outputs, produced by input capacitor with anomalous leackage current or humidity between pins.
■ The delay from 3 to 4 can be selected by software, starting from T.B.D. ms

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIIN.	TYP.	MAX.
A	4.45	4.50	4.65	0.175	0.177	0.183
B	1.80	1.90	2.00	0.070	0.074	0.079
C		1.40			0.055	
D	0.75	0.90	1.05	0.029	0.035	0.041
E	0.37	0.39	0.42	0.014	0.015	0.016
F (1)			0.57			0.022
G	0.80	1.00	1.20	0.031	0.040	0.047
G1	25.75	26.00	26.25	1.014	1.023	1.033
H (2)	28.90	29.23	29.30	1.139	1.150	1.153
H1		17.00			0.669	
H2		12.80			0.503	
H3		0.80			0.031	
L (2)	22.07	22.47	22.87	0.869	0.884	0.904
L1	18.57	18.97	19.37	0.731	0.747	0.762
L2 (2)	15.50	15.70	15.90	0.610	0.618	0.626
L3	7.70	7.85	7.95	0.303	0.309	0.313
L4		5			0.197	
L5		3.5			0.138	
M	3.70	4.00	4.30	0.145	0.157	0.169
M1	3.60	4.00	4.40	0.142	0.157	0.173
N		2.20			0.086	
O		2			0.079	
R		1.70			0.067	
R1		0.5			0.02	
R2		0.3			0.12	
R3		1.25			0.049	
R4		0.50			0.019	
V	5° (Typ.)					
V1	$3{ }^{\circ}$ (Typ.)					
V2	20° (Typ.)					
V3	45° (Typ.)					

(2): molding protusion included

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

