

4½/5½ Digit ADC Subsystem

PRELIMINARY TECHNICAL DATA

FEATURES

Resolution: ±4 1/2 Digits BCD or ±20k Count Binary Capability for 5 1/2 Digit Resolution or Custom Data Formats Data Format: Multiplexed BCD (for Display) and Serial Count (for External Linearization, Data Reformatting, or Microprocessor Interface)

Accuracy: ±1 Count in ±20k Counts

Scale Factor Drift: 0.2ppm/°C Using Only Medium-

Precision Op Amps

Requires only a Single Positive Reference

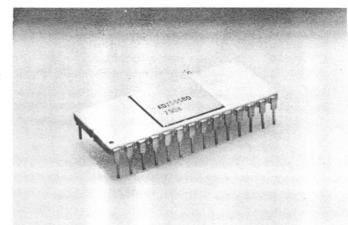
Overrange Display

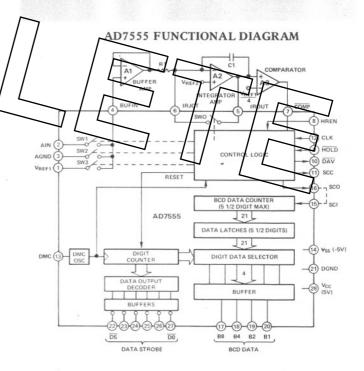
Auto Calibration Capability

Interfaces to TTL or 5V

HOLD Input and SCC System Conversion Complete

utput for Interface Flexibility


GENERAL DESCRIPTION


The AD7555 is a 4 1/2 digit, morfolith integrating ADC subsystem designed for processor interface applications. Use of the high enable input expands the display format to 5 1/2 digits With SCO (Serial Count Out) connected to SCI (Serial Count In), the output data format is multiplexed BCD suitable for visual display purposes. As an added feature, SCO can also be used with rate multipliers for linearization, or with BCD or binary counters for data reformatting (up to 200k binary

The quad slope conversion algorithm (Analog Devices patent No. 3872466) converts the external amplifier's input drift errors to a digital number and subsequently reduces the total system drift error to a second order effect. Using only inexpensive, medium-precision amplifiers a scale factor drift of 0.2ppm/°C is achieved.

PIN CONFIGURATION

V _{REF1} 1	-	28 V _{CC}
AIN 2		27 D0
AGND 3		26 D1
BUFIN 4		25 D2
IROUT 5		24 D3
IRJCT 6	AD7555 TOP VIEW	23 D4
COMP 7	TOP VIEW	22 D5
LREN 8		21 DGND
HOLD 9	-	20 B1
DAV 10		19 B2
SCC 11		18 84
CLK 12		17 B8
DMC 13	1	16 SCO
V _{SS} 14		15 SCI

ORDERING INFORMATION

Model	Package	Operating Temperature Range
AD7555BD	28 Pin Side Brazed Ceramic	-25°C to +85°C
AD7555KN	28 Pin Molded Plastic	0 to +70°C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 TWX: 710/394-6577

Tel: 617/329-4700

West Coast Mid-West 312/894-3300 714/842-1717

Texas 214/231-5094

SPECIFICATIONS (V_{CC} = +5V, V_{SS} = -5V, V_{REF1} = +4.0960V, F_{CLK} = 614.4kHz, AGND = 0V)

	LIMIT AT	LIMIT AT TA		
PARAMETER	$T_A = +25^{\circ}C$	$= T_{min}, T_{max}$	UNITS	CONDITIONS/COMMENTS
ANALOG SWITCHES				The second secon
R _{ON} (Switch 1-3)	800	1200	Ω max	-2V ≤ AIN ≤ +2V Refer to Functional Diagram
ΔR _{ON} (Switch 1) versus AIN	300	500	Ωtyp	-2V ≤ AIN ≤ +2V
Mismatch Between Any Two			7 F	
Switches (excluding SW0)	300	500	Ω typ	$-2V \leq AIN \leq +2V$
I _{LKG} (Switch OFF)	500	500	as typ	LV WHIT WILV
SW0 (pin 6)	1	70	nA max	IRJCT (pin 5) = $+2.048V$
5110 (pin 0)	1	70	IIA IIIAX	
SW1 (pin 2)	1	70		0V≤IROUT (pin 5)≤+10V
	1		nA typ	AIN = $+2V$ to $-2V$, BUFIN = $0V$ and $+4.096V$
SW2 (pin 3)	1	70	nA typ	AGND = 0V, $BUFIN = -2V$ to $+2V$, $+4.096V$
SW3 (pin 1)	1	70	nA typ	$V_{REF1} = +4.096V$, BUFIN = -2V to +2V
I _{LKG} (BUFIN, pin 4)	3	200	nA typ	Any 1 of SW1, 2, 3 on
ONTROL INPUTS (pins 7, 8, 9, 15)				**************************************
V_{INH}	3.0	3.0	V min	
VINE	0.8	0.8	V max	
I _{INH} or I _{INI}	1	10	μA max	$V_{IN} = 0V$ or V_{CC}
	1	10	ра шах	VIN = 0 v of VCC
CLOCK INPUTS (pir 12 and 13)				
V _{INH} (CLK)	3.5	3.5	V min	
V _{INL} (CL/K)	0.8	0.8	V max	
White (DMC)	20	3.0	V min	
VINL (DMC)	0.8	0.8	V max	
I _{INH} (CLK)	10/	1/5	m A max	
I _{INL} (CLK)	-1.0	71.5	mA max	
I _{INH} (DMC)		800	uA max	
I _{INL} (DMC)	100	150	'/ /	
	100		uA max	
DIGITAL OUTPUTS	*		1 L	
$\overline{D0} - \overline{D5}$ (pins 22-27)	477			$\overline{}$
V _{OH}	4.5	4.5	V min	$I_{SOURCE} = 40\mu A$
V _{OL}	4.0	4.0	V max	I _{SINK} = 5mA (Display Driver Load)
V_{OL}	0.5	0.8	V max	I _{SINK} = 1.6mA (TTL Load)
B1, B2, B4, B8, DAV, SCC, SCO				
(pins 20, 19, 18, 17, 10, 11, 16)				
V_{OH}	4.0	4.0	V min	$I_{\text{SOURCE}} = 40\mu\text{A}$
V_{OL}	0.5	0.8	V max	I _{SINK} = 1.6mA
			· max	SINK - 1.0IIII
YNAMIC PERFORMANCE	-			
DMC Pulse Width	5	5	μ s min	See Figure 3
DMC Frequency	100	100	kHz max	Typical f _{DMC} is 1.5kHz with
				$C_{DMC} = 0.01 \mu F$
CLK Frequency	1.5	1.5	MHz max	KONTONIO III
Propagation Delays				
DMC HIGH to DAV HIGH	5	7	μs max	See Figure 3
DMC HIGH to DAV LOW	5	7	μs max	
DMC HIGH to BCD Data on	170	700	po man	
B8, B4, B2, B1	5	5	110	
	3	5	μs max	
DMC LOW to Digit Strobe (D0 - D5) LOW	5	5		
	5	5	μs max	
OWER SUPPLY		9		
ICC	5	5	mA max	During Conversion
Iss	5	5	mA max	During Conversion
V Dange	+5 to $+17$	+5 to +17	V	See Absolute Maximum Ratings
V _{CC} Range				

Specifications subject to change without notice.

System Electrical Characteristics

ABSOLUTE	MAXIMUM	RATINGS
MUSULUIL	TANK WY WWW.	

V_{CC} to DGND
V _{SS} to DGND17V
V _{CC} to V _{SS}
Digital Outputs V _{CC} , DGND
Digital Inputs
DMC (Pin 13), CLK (Pin 12) V _{SS} , V _{CC}
All other Logic Inputs DGND, +17V
Analog Inputs/Outputs
AGND to DGND (Positive Limitation) VCC or VIROUT*
AGND to DGND (Negative Limitation). VSS or VIROUT -20V†
AIN (Pin 2), V _{REF1} (Pin 1),
BUFIN (Pin 4) V _{CC} , V _{SS}
IRJCT (Pin 6), IROUT (Pin 5) +27V, AGND
Operating Temperature Range
AD7555KN (Plastic) 0 to +70°C

Power Dissipation (package)
Plastic (AD7555KN)

*Whichever is the least positive. †Whichever is the least negative.

NOTE

Do not apply voltages to any AD7555 digital output, AIN or V_{REF1} before V_{CC} and V_{SS} are applied. Additionally, the voltages at AIN, V_{REF1} or any digital output must never exceed V_{CC} and V_{SS} (if an op amp output is used to drive AIN it must be powered by the AD7555 V_{CC} and V_{SS} supply voltages). Do not allow any digital input to swing below DGND.

ESD (Electro-Static-Discharge) sensitive device. The digital control inputs are zener protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The foam should be discharged to the destination socker before devices are removed.

 -25° C to $+85^{\circ}$ C -65° C to $+150^{\circ}$ C

... +300°C

SYSTEM ELECTRICAL CHARACTERISTICS (TA 0 to

Characteristics refer to the system of Figures 6a and 6b. V_{CC} = +5V, V_{SS} = -5V, V_{REF1} = +4.096V, error count n calibrated to zero at T_A = +25°C as per procedure on page 9 unless otherwise noted. Switch leakages and limitations in temperature performance of auxiliary components (such as the integrating capacitor) cause performance degradations above +45°C.

CHARACTERISTIC	LIMIT	CONDITIONS/COMMENTS
Resolution	4 1/2 Digit BCD 5 1/2 Digit BCD	±20,000 Counts ±200,000 Counts (See Note 1)
Relative Accuracy	±1 Count max ±10 Count max	4 1/2 Digit BCD 5 1/2 Digit BCD (See Notes 1 and 2)
Count Uncertainty Due to Noise (Flicker)	±1/2 Count max ±2 Counts max	4 1/2 Digit BCD 5 1/2 Digit BCD (See Note 1)
Conversion Time	610ms max 1,760ms max	4 1/2 Digit BCD 5 1/2 Digit BCD

NOTES:

Storage 7

Lead Temperat

 1 4 1/2 digit mode; $~f_{CLK}$ = 614.4kHz, HREN = LOW, R $_1$ = 360k Ω $~C_1$ = 0.22 μF

5 1/2 digit mode; fCLK = 1.024MHz, HREN = HIGH, R $_1$ = 750k Ω C $_1$ = 0.22 μ F

² Assumes voltage reference (V_{REF1}) TC of 0ppm/°C.

(See Note 1)

Applyi	ng the	AD7555
AD7555 P	IN DESCRI	PTION
	FUNCTION	NS
AIN AGND BUFIN IROUT IRJCT	(Pin 1): (Pin 2): (Pin 3): (Pin 4): (Pin 5): (Pin 6):	+4.096V Reference Input Analog Input Voltage (±2V Full Scale) Analog Signal Common Ground To External Buffer Amplifier Input From Integrator Amplifier Output To Integrator Amplifier Summing Junction
LOGIC IN	PUTS (Pin 7):	Input from the external comparator.
HREN	(Pin 8):	High Resolution Enable, determines converter resolution HREN = LOGIC LOW, Full Scale =
		$\pm 1.9999 V$ (100 μV resolution)
		HREN = LOGIC HIGH, Full Scale = ±1.99999V (10μV resolution)
VOLD	(Rin 9):	Hold Input HOLD = DOGIC HIGH, the ADC converts and updates the displays continuously as per the timing
	ノノI	diagram of Figure 3.
		reset and conversion is disabled. Data from the last complete conversion continues to be displayed. To ensure most recent data is displayed, HOLD should
		not be taken LOW when DAV is HIGH. When HOLD returns HIGH, the next leading edge of DMC initiates a new conversion.
DMC	(Pin 13):	Display Multiplexer Clock, can be driven from an external logic source, or with the addition of an external capacitor, will self oscillate. With an external capacitor of 10,000pF, DMC oscillates at approximately 1.5kHz at a 5% to 10% duty cycle, suitable for display purposes.
CLK	(Pin 12):	Clock Input for maximum line rejection in the 4 1/2 digit mode; 50Hz: f _{CLK} = 512kHz (= 4.096MHz ÷ 8)
		60Hz: f _{CLK} = 614.4kHz (= 4.915MHz ÷ 8)
		50/60Hz: f _{CLK} = 409.6kHz (= 3.2768MHz ÷ 8) For maximum line rejection in the 5 1/2 digit mode;
		$50/60$ Hz, $f_{CLK} = 1.024$ MHz (= 4.096 MHz $\div 4$)
SCI	(Pin 15):	Serial Count In. Input to totalizing counter in the AD7555. SCI is normally connected to SC0 for direct count totalization.
SUPPLY II	NPUTS	Cotanzation.
V_{CC}	(Pin 28):	Positive Supply Input (+5V)
V _{SS} DGND	(Pin 14): (Pin 21):	Negative Supply Input (-5V) Digital Ground

JTPUTS					
(Pins 1 20)	7 –	BCD8 - BCD1 output, Active HIGH (See table 1)			
(Pin 22	!):				
(Pins 2 27)	23-				digit outputs,
(Pin 27):	10 ⁰ /overflow/polarity output, Active LOW			
(Pin 11):	System conversion complete, goes HIGH when conversion is complete, returns LOW on comparator crossing at end of phase 0 integration period.			
(Pin 16):	Serial Count Out, a serial output pulse train proportional in length to the magnitude of AIN. SCO can be externally pulled HIGH while DAV = HIGH to display the error count "n" for calibration purposes (see page 9).			
		big after retu Wh	D or h or er a rns en i	to I	ta being presented on the at bus is valid. DAV goes of first positive edge of DMC version is complete and two DMC pulses later. The surns low, the digit counter to This is termed the RESET.
		_	_		
DATA	В8	В4	В2	В1	LED DISPLAY WHEN USING 7447
					SEGMENT DECODER
	-0	0	0	0	A SECTION OF CONTRACT
0	0	0	0	0	A SECTION OF CONTRACT
0	0	0	0	1	A SECTION OF CONTRACT
0 1 2	0	0	0	1	A SECTION OF CONTRACT
0 1 2 3	0 0	0 0 0	0 1 1	1 0 1	\$4.50 \$4.50
0 1 2 3 4	0 0 0	0 0 0	0 1 1 0	1 0 1 0	\$4.50 \$4.50
0 1 2 3	0 0	0 0 0	0 1 1	1 0 1	SEGMENT DECODER
	20) (Pin 22 1 (Pins 2 27) (Pin 27 (Pin 11	(Pins 17 – 20) (Pin 22): I (Pins 23 – 27) (Pin 27): (Pin 11): (Pin 16):	(Pins 17 – BC 20) (Pin 22): 10 dig (Pins 23 – 10) (Pin 27): 10 (Pin 11): System (Pin 16): Sen tra ma ext = I may for the BC hying after the MA	(Pins 17 – BCD8 20) (Se (Pin 22): 10 ⁻⁵ of 5 1/2 digit n I (Pins 23 – 10 ⁻⁴ – Act (Pin 27): 10 ⁰ / or Act (Pin 11): System HIGH returns at end (Pin 16): Serial of train p magnit extern = HIG "n" fo page 9 (Pin 10): Data V that th BCD o high on after a returns When is is reset MASTI	(Pins 17 – BCD8 – BCD9 – BCD8

Table 1. Output Coding

OVERFLOW

DIGIT 0 ONLY Component limitations such as switch leakage, as well as operational amplifier offset voltage and bias current (and the temperature dependency of these errors), are major obstacles when designing high resolution integrating A/D converters.

The AD7555 however, utilizes a patented quad slope conversion technique (Analog Devices Patent No. 3872466) to reduce the effects of such errors to second order effects.

Figure 1 shows a simplified quad slope integrator circuit. The various inputs AGND (Analog Ground), VREF1, and AIN (Analog Input) are applied in sequence to the integrator via switches 1-3 (see Table 2), creating four slopes at the integrator output (phase 1-4 of Figure 2). If the equivalent summing junction voltage V_S is precisely 0.5V_{REF1}, the phase 1 and phase 2 integration times are equal, indicating there are no input errors. If $V_S \neq 0.5V_{REF1}$ (due to amplifier offset bias current, etc.), an error count "n" is obtained.

nalog input integration cycle (phase 3) is subsequently lengthened or shortened by "n" counts, depending on was positive or p whether the er

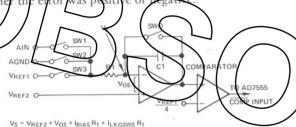


Figure 1. Simplified Quad Slope Integrator Circuit

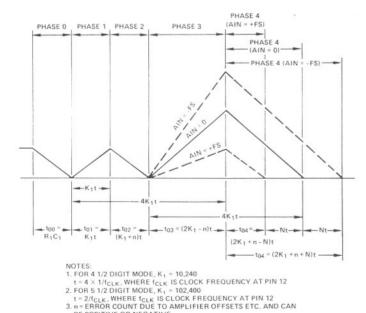


Figure 2. Quad Slope Integrator Output

BE POSITIVE OR NEGATIVE.

The final effect is to reduce the analog input error terms to second order effects. This can be proven by solving the differential equations obtained during the phase 1 through phase 4 integration periods. Barring third (and higher) order effects, the solutions are given in equations 1 and 2.

Ausid Slove Theory of Operation

$$N_{(AIN \geqslant 0)} = K_T \left[\frac{AIN}{V_{REF1}} \right] + K_T \left[\frac{AIN}{V_{REF1}} - 1 \right] \left[-\alpha^2 + \frac{AGND}{V_{REF1}} (1 + 2\alpha) \right]$$

$$IDEAL TERM ERROR TERM EQN1$$

$$N_{(AIN < 0)} = -K_T \left[\begin{array}{c} AIN \\ \hline V_{REF1} \end{array} \right] - K_T \left[\begin{array}{c} AIN \\ \hline V_{REF1} \end{array} - 1 \right] \left[-\alpha^2 + \frac{AGND}{V_{REF1}} (1 + 2\alpha) \right]$$

$$IDEAL TERM \qquad ERROR TERM \qquad EQN2$$

WHERE:

N = Number of counts appearing at AD7555 Serial Count Out pin corresponding to the analog input voltage, AIN.

AIN = Analog Input Voltage to be digitized

K_T = 40960 counts (4 1/2 Digit Mode) 409600 counts (5 1/2 Digit Mode)

AGND = Voltage at AD7555 pin 3 (AGND) measured with respect to VREF1 and AIN signal common ground. (Ideally, AGND = 0V) α is an error term equal to $\frac{2V_S - V_{REF1}}{V_{REF1}}$

Ideally $\alpha = 0$ when $V_S = 0.5V_{REF1}$.

NOTE:
$$V_S = V_{REF1} + V_{OS1} + V_{OS2} + I_{B2}R_1 + I_{SW0}R_1$$
WHERE:
$$V_{REF2} = 0.5 V_{REF1} \text{ if no error is present}$$

$$V_{OS1} = \text{Offset voltage of buffer amplifier A1 (required to buffer the effect of } \Delta R_{ON} \text{ of } SW1 - SW2)$$

$$V_{OS2} = \text{Offset voltage of integrator amplifier A2}$$

$$I_{B2}R_1 = \text{Equivalent integrator amplifier of fset voltage due to bias current of A2}$$

ISWOR1 = Equivalent integrator amplifier offset voltage due to SW0 leakage current.

If AGND = 0, then the error terms of EQN 1 and 2 contain only second order effects due to $a \neq 0$. Thus, the AD7555 is a powerful tool which allows high precision system performance to be obtained when using only moderate precision op

Other advantages of the quad slope technique include bipolar operation using a single positive voltage reference, and the fact that since the comparator propagation delay is constant hysteresis effects are eliminated. (This is because the comparator always approaches the zero crossing from the same direction).

Phase	Switch Closed (Figure 1)	Equivalent Input Voltage	Integration Time
0	SW3	V _{REF1} - V _S	$t_{00} = R_1 C_1$
1	SW2	AGND - V _S	$t_{O1} = K_1 t$
2	SW3	V _{REF1} - V _S	$t_{02} = (K_1 + n)t$
3	SW1	AIN - V _S	$t_{03} = (2K_1 - n)t$
4	SW3	V _{REF1} - V _S	$t_{04} = (2K_1 + n \pm N)t$
5	SW0	RES	ET INTEGRATOR

Table 2. Integrator Equivalent Input Voltages and Integration Times

TIMING AND CONTROL

Figure 3 shows the AD7555 timing. SCC goes <u>HIGH</u> at the end of SCO indicating conversion is complete. DAV goes HIGH on the 1st leading edge of DMC after conversion is complete. New data is strobed into the data latches (see functional diagram) on the leading edge of the 2nd DMC. DAV returns low on the leading edge of the 3rd DMC.

BCD data is placed on B1, B2, B4, B8 on the positive edge of DMC while the digit counter is incremented on the negative edges of DMC.

A reset phase (phase 0) is initiated on the 4th DMC after conversion is complete. SCC returns low at the phase 0 comparator crossing indicating a conversion start.

If the DMC oscillator is set up to free run (C8 in Figure 6b causes DMC to run at about 1.5kHz), the AD7555 will continuously convert and update the displays.

Externally controlling the generation of DMC pulses provides a means of controlling data outputting for computer interface applications. Pages 10 and 11 illustrate how to use this feature to interface the AD7575 to a microprocessor.

his LAY
The autput data format of the AD 555 is multiplexed BCD as per the 1 iming Diagram of Figure 3. The autput code format is shown in Table

Overflow causes digit 1 through rigit 4 (digit 1 through digit 5 in 5 1/2 digit mode) to output a BOO 12 (1100) Overflow does not affect digit 0. Therefore, a positive overflow is displayed as 1/1/2/2/2/2 and a negative overflow as _// when using the 7447 seven-segment decoder.

PRINTED CIRCUIT LAYOUT

ПП

db

DS6

DS5 DL707

DS4

DS3

DS2 DL707

DS1 DL701

To ensure performance with the system specifications Figures

WIRE STRAP

B7-14 200

0

9

R7

9

φ

R9 R1

19

G INSU

7447

0-

D2 IN914

ALTERNATIVE SIZE CRYSTAL

A3 AD301

> C1 0.1μF

5 0.01μF

INSULATED WIRE LINK

5a and 5b show the recommended P.C. board layout for the AD7555. Figure 4 shows the component overlay for Figure 5a.

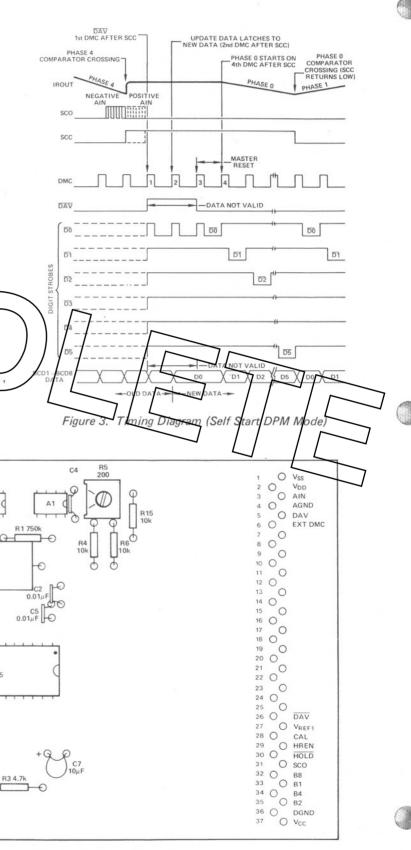


Figure 4. Component Overlay for Figure 5a

PCB Layout is reproduced on a one to one scale. Note that a pad already exists on the PCB layout for an AD584LH voltage reference, suitable for 4 1/2 digit operation.

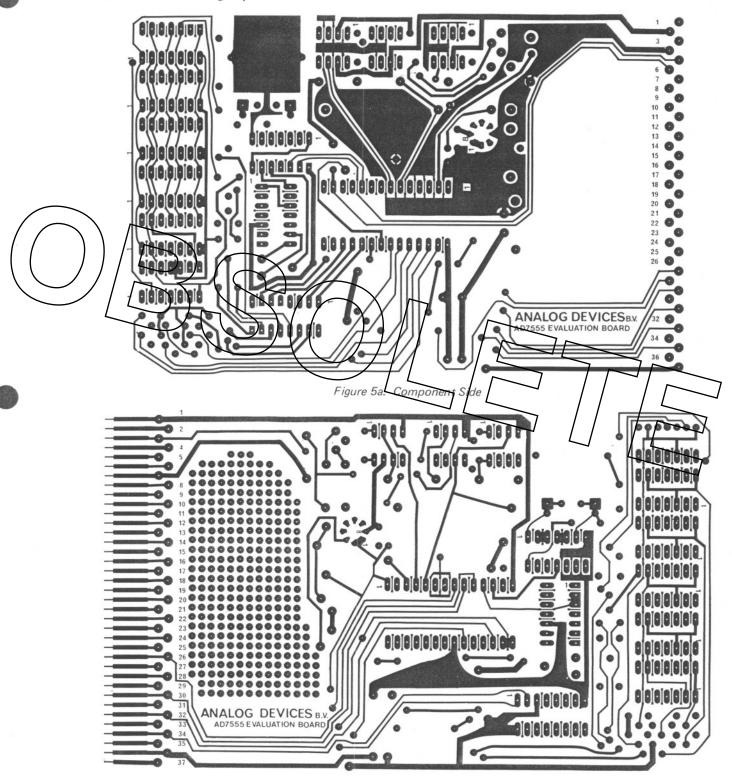


Figure 5b. Foil Side

ANALOG CIRCUIT SET-UP AND OPERATION

The following steps, in conjunction with the analog circuitry of Figure 6a explain the selection of the various component

1. Selection of Integrator Components R₁ and C₁

Improper selection of the integrator time constant (time constant = R_1C_1) may cause excessive noise due to the integrator output level being too low, or may cause nonlinear operation if the integrator output attempts to exceed the rated output voltage of the amplifier. The integrator time constant R_1C_1 must be:

$$\frac{(\mathrm{V_{REF1}})(\mathrm{K}_{\alpha})}{(\mathrm{f_{CLK}})~(7\mathrm{V})}~\geqslant_{\mathrm{R_{1}C_{1}}}\geqslant_{\mathrm{I}} \frac{(\mathrm{V_{REF1}})(\mathrm{K}_{\alpha})}{(\mathrm{f_{CLK}})(\mathrm{V_{DD}}~-5\mathrm{V})}$$

Where:

polystyrene

noise injec

VDD is the integrator amplifier positive supply voltage f_{CLK} is the clock frequency at pin 12 $= 8.2 \times 10^4$ (4 1/2 digit mode) or 4.0 X 10⁵ (5 1/2 digit mode) apacitor must be a low leakage, low ng

its summing junction. values required for proper operation.

The recommended maximum value for R1 in both the 4 1/2 digit and 5 1/2 digit mode is 750k Ω . Higher values may_cause noise injection.

nected to the output of the integrating amplifier, not to

2. Determing Conversion Time

Maximum conversion time occurs when AIN = -FS and is given by

4 1/2 DIGIT MODE

 $t_{CONVERT} = (325,760)(t_{CLK}) + R_1C_1$

5 1/2 DIGIT MODE

 $t_{CONVERT} = (1,628,800)(t_{CLK}) + R_1C_1$ Where:

= Period of CLK as measured at pin 12 t_{CLK} = Integrator Time Constant R_1C_1

3. Initial Calibration

- a. Adjust $V_{\mbox{\scriptsize REF1}}$ so that the voltage at pin 1 ($V_{\mbox{\scriptsize REF1}}$) of the AD7555 is +4.0960V.
- b. Apply 0V to AIN and adjust R5 (VREF2 Adjust) for display 0.0000. (See optional calibration procedure

dielectric absorption teflon (5 1/2 digit mode), type such as or poly /2 digit mode) foil of CI must on the next page for more precise calibration.) 26 25 AD7555 C5 0.01μF 2V TO -2V COMP AIN RETURN IRIN V_{DD}, V_{SS} SUPPLY RETURN IROUT V_{DD} = +15V V_{REF1} RETURN C2 0.01µF OTES:

R₁C₁ VALUES SHOWN ARE FOR 5 1/2 DIGIT MODE. FOR 4 1/2 DIGIT MODE R₁ = 360k, C₁ = 0.22µF,
SUITABLE CAPACITORS AVAILABLE FROM COMPONENT RESEARCH CO. INC., 1655 26th STREET,
SANTA MONICA, CA. 90404, (STOCK NUMBER FOR 0.22µF CAPACITOR IS D11B224KXW).
R4, R6, R15 1% TOLERANCE
FOR 4 1/2 DIGIT MODE USE AD584LH, FOR 5 1/2 DIGIT MODE A TEMPERATURE CONTROLLED
BURIED ZENER REFERENCE SUCH AS THE LM399H SHOULD BE USED.

Figure 6a, Analog Circuit Diagram

APPLICATION HINTS

- 1. See Note under Absolute Maximum Ratings for proper power sequencing and input/output voltage ratings.
- 2. For linear operation the absolute magnitude of AIN cannot exceed 1/2 V_{REF1}. In no case must AIN be more negative than VSS.
- 3. Do not leave unused CMOS inputs floating.
- 4. Check that integrator components R1 and C1 are chosen as per paragraph 1 of the setup and operation section on this page and that initial calibration as per paragraph 3 has been
- accomplished. A resistor value no larger than 750k is reccommended to minimize noise pickup.
- 5. For optimum normal mode noise rejection, use the crystal frequencies shown on page 4.
- 6. In order for the calibrate mode (on the next page) to display the error count properly it can be shown that

 $V_{REF2} \ge V_{REF1} \times 0.4883$ Specifically, for VREF1 = 4.0960V V_{REF1}≥2V

LOGIC AND DISPLAY CIRCUITRY

The AD7555 possesses 4 1/2 digit accuracy with potential for 5 1/2 digit resolution. Figure 6b shows the logic and display circuitry when operating the AD7555 with this high resolution.

MODIFYING THE FULL SCALE DISPLAY

Availability of the SCO and SCI terminals on the AD7555 provides flexibility for range-switching and modified data-format applications.

For example, in the 5 1/2 digit mode, inserting a \div 5 counter between SCO and SCI provides a full scale count at SCI of 39,999 counts (199,999 \div 5).

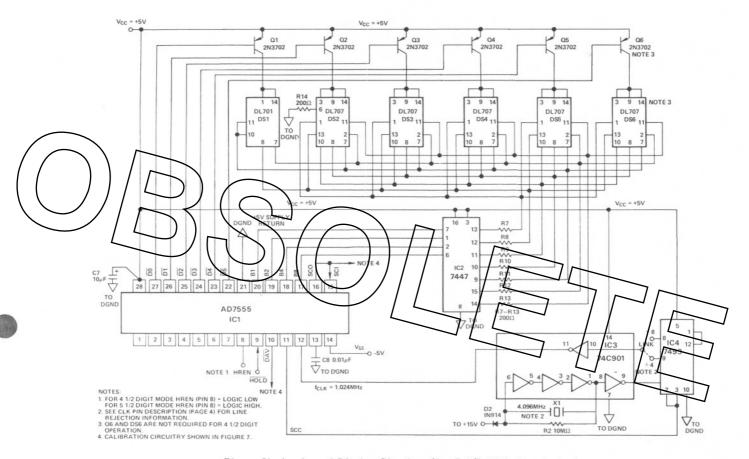


Figure 6b. Logic and Display Circuitry (for 5 1/2 Digit Resolution)

CALIBRATING THE AD7555

When the AD7555 is placed in the *calibrate* mode, any resulting error voltage in V_S (summing junction voltage), due to drift, etc., will be contained in the resulting display. To display the error SC1 and SC0 must be taken HIGH (only allowable when \overline{DAV} is HIGH). In the *calibrate* mode the display indicates +b.0480 $\pm n$ (+b.04800 $\pm n$ in 5 1/2 digit mode) where b indicates a blanked digit and n is a number representing the reference input errors. This gives the change required in V_{REF2} ($\pm \Delta V_{REF2}$) for proper calibration (ie., n \approx 0). The exact relationship between n and ΔV_{REF2} can be shown to be equal to:

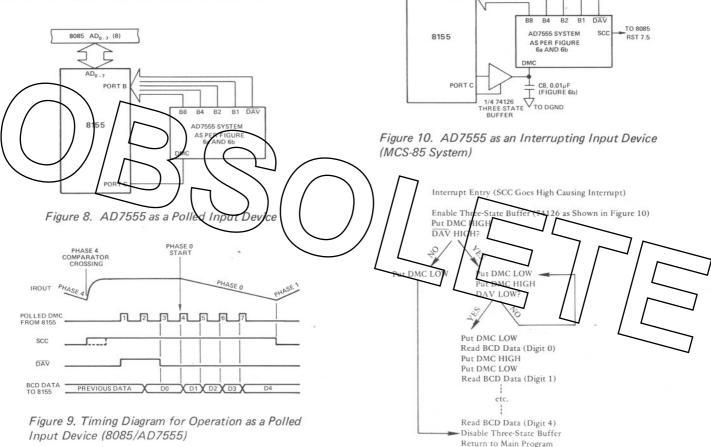
$$\Delta V_{REF2} = \frac{(V_{REF1})n}{40,960 + n} \quad (4 \text{ 1/2 digit operation})$$

$$\Delta V_{REF2} = \frac{(V_{REF1}) \, 10n}{40,960 + 10n}$$
 (5 1/2 digit operation)

For this capability to operate, |V_{REF2}| must be 1/2 V_{REF1} ±2%.

Figure 7 shows the hardware connections for manual calibration. With the switch in the *calibrate* mode, adjust $V_{\rm REF2}$ (potentiometer R5 as shown in Figure 6a) until the display reads +6.0480 (+6.04800 in 5 1/2 digit mode). The AD7555 is now calibrated to the center of its error correcting range.

Return the switch to normal to resume normal conversion.


Figure 7. Hardware Requirements for Manual Calibration of n = 0

Microprocessor Interfacing

AD7555 AS A POLLED INPUT DEVICE (MCS-85 SYSTEM) Figure 8 shows an AD7555/8085 interface. The DMC clock input of the AD7555 is controlled by the microcomputer via an output port of the 8155.

Typical timing for this interface mode is shown in Figure 9. DAV goes HIGH on the 1st DMC leading edge after SCC goes HIGH. It returns LOW on the rising edge of the 3rd DMC pulse. Digit zero is availabe on B1, B2, B4 and B8 at this time. The leading edge of the 4th DMC pulse initiates a new conversion and places digit 1 on B1, B2, B4 and B8.

Table 3 shows a procedure for polling the AD7555.

Pur DMC HIGH DAV HIGH? Put DMC LOW Put DMC LOW Put DMC HIGH Delay or Put DMC LOW Main Program Put DMC HIGH Put DMC LOW Read BCD Data (Digit 0) Put DMC HIGH (Initiates New Conversion) Put DMC LOW Read BCD Data (Digit 1) Put DMC HIGH Put DMC LOW Read BCD Data (Digit 2)

Table 3. Procedure for Interfacing the AD7555 as a Polled Input Device

Read BCD Data (Digit 4)

Table 4. Procedure for Interfacing the AD7555 as an Interrupting Input Device

AD7555 AS AN INTERRUPTING INPUT DEVICE

The AD7555 DMC oscillator provides DMC pulses until SCC

rupt on the RST 7.5 line whereby the three-state buffer is

(System Conversion Complete) goes high. This causes an inter-

activated and the microprocessor takes control of DMC. Table

4 shows a procedure for using the AD7555 in this mode. Fig-

(MCS-85 SYSTEM)

ure 10 shows the basic hookup.

8085 AD₀₋₇ (8)

OPTO-ISOLATED SERIAL INTERFACE

Figure 11 shows a serial interface to the MCS-85 system. This system can accommodate a remote interface where a commonmode voltage is expected to exist between system grounds. The 8155 counter/timer is only 14 bits long, i.e., it can only count down from 2¹⁴; therefore SCO output from the AD7555 (20k counts full scale) has to be divided by 2 with consequent reduction in system resolution.

Port C of the 8155 is configured as a control port. Port B is an input port. This port configuration is necessary if sign information is required. Magnitude information is obtained by interrogating the 8155 counter value. The rising edge of \overline{DAV} is used to cause an interrupt on the RST 7.5 line. The value $\left(2^{14} - \left|\frac{SCO}{2}\right|\right)$ in the 8155 counter should now be read.

When \overline{DAV} returns low the 8155 counter is reset to FF_H. Sign information is checked at this time since $\overline{D_0}$ BCD data is present and stable on the BCD bus (see Figure 9). The B2 \underline{line} of the BCD bus is latched into port B by the signal on B STB i.e. the falling edge of \overline{DAV} . This causes a rising edge signal on BF (buffer full) to call the 8085 CPU to read the B2 bit. B2 bit is HIGH for negative data, LOW for positive data.

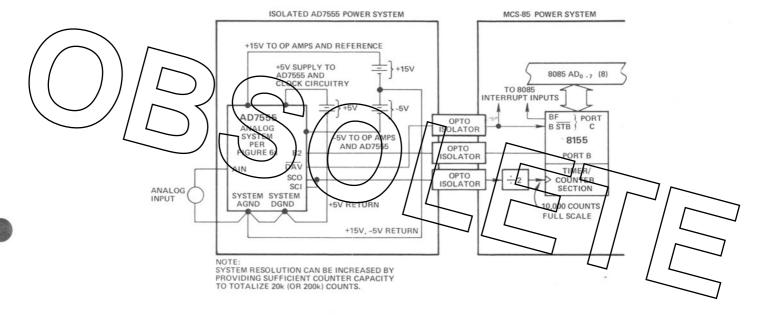
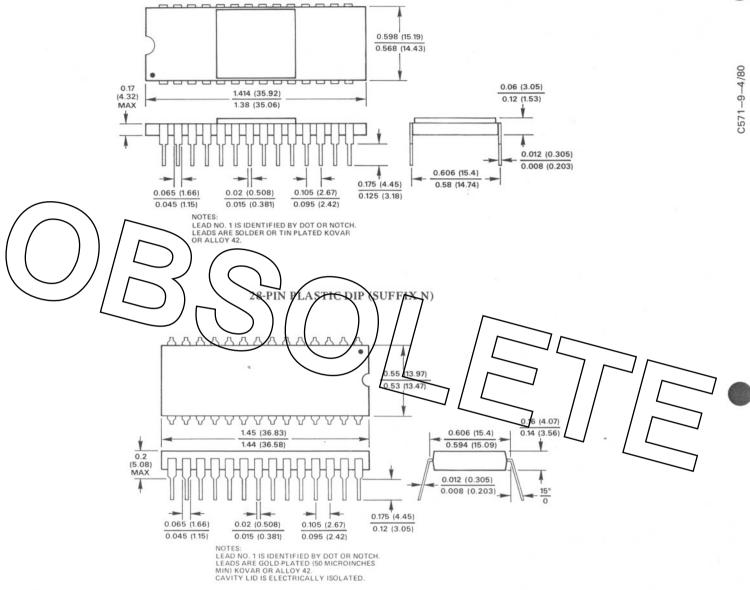



Figure 11. Optically Isolated Serial AD7555/MCS-85 Interface (Full Scale = 10,000 Counts)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-PIN CERAMIC DIP (SUFFIX D)

