4-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD753017A is one of the 75XL series 4-bit single-chip microcontroller chips and has a data processing capability comparable to that of an 8 -bit microcontroller.

It has an on-chip LCD controller/driver with a larger ROM capacity and extended CPU functions compared with the conventional μ PD75316B, and can provide high-speed operation at a low supply voltage of 1.8 V . It can be supplied in a small plastic TQFP package ($12 \times 12 \mathrm{~mm}$) and is suitable for small sets using LCD panels.

Detailed descriptions of functions are provided in the following document. Be sure to read the document before designing.

$$
\mu \text { PD753017 User's Manual : U11282E }
$$

FEATURES

- Low voltage operation: $\mathrm{VDD}=1.8$ to 5.5 V
- Can be driven by two 1.5 V batteries
- On-chip memory
- Program memory (ROM):
12288×8 bits (μ PD753012A) 16384×8 bits (μ PD753016A) 24576×8 bits (μ PD753017A)
- Data memory (RAM): 1024×4 bits
- Capable of high-speed operation and variable instruction execution time for power saving
- $0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (at 4.19 MHz operation)
- $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (at 6.0 MHz operation)
- $122 \mu \mathrm{~s}$ (at 32.768 kHz operation)
- Internal programmable LCD controller/driver
- Small plastic TQFP ($12 \times 12 \mathrm{~mm}$)
- Suitable for small sets such as cameras
- One-time PROM: μ PD75P3018A

APPLICATION

Remote controllers, camera-integrated VCRs, cameras, gas meters, etc.

In this document, unless otherwise specified, the description is made based on μ PD753017A as typical product.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ORDERING INFORMATION

Part number
Package

Remark XXX indicates ROM code suffix.

FUNCTION OUTLINE

CONTENTS

1. PIN CONFIGURATION (Top View) 6
2. BLOCK DIAGRAM 8
3. PIN FUNCTION 9
3.1 Port Pins 9
3.2 Non-port Pins 11
3.3 Pin Input/Output Circuits 13
3.4 Recommended Connection for Unused Pins 15
4. SWITCHING FUNCTION BETWEEN MkI MODE AND Mk II MODE 16
4.1 Differences between Mk I Mode and Mk II Mode 16
4.2 Setting Method of Stack Bank Select Register (SBS) 17
5. MEMORY CONFIGURATION 18
6. PERIPHERAL HARDWARE FUNCTIONS 23
6.1 Digital Input/Output Ports 23
6.2 Clock Generator 24
6.3 Subsystem Clock Oscillator Control Functions 25
6.4 Clock Output Circuit 26
6.5 Basic Interval Timer/Watchdog Timer 27
6.6 Watch Timer 28
6.7 Timer/Event Counter 29
6.8 Serial Interface 33
6.9 LCD Controller/Driver 35
6.10 Bit Sequential Buffer 37
7. INTERRUPT FUNCTION AND TEST FUNCTION 38
8. STANDBY FUNCTION 40
9. RESET FUNCTION 41
10. MASK OPTION 44
11. INSTRUCTION SET 45
12. ELECTRICAL SPECIFICATIONS 57
13. CHARACTERISTICS CURVES (REFERENCE VALUES) 71
14. PACKAGE DRAWINGS 73
15. RECOMMENDED SOLDERING CONDITIONS 77
APPENDIX A. μ PD75316B, 753017A AND 75P3018A FUNCTION LIST 79
APPENDIX B. DEVELOPMENT TOOLS 81
APPENDIX C. RELATED DOCUMENTS 85

1. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
μ PD753012AGC-XXX-3B9, 753012AGC-XXX-8BT, 753016AGC-XXX-3B9, 753016AGC-XXX-8BT μ PD753017AGC-XXX-3B9, 753017AGC-XXX-8BT
- 80-pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm})$
μ PD753012AGK-XXX-BE9, 753012AGK-XXX-9EU, 753016AGK-XXX-BE9, 753016AGK-XXX-9EU
μ PD753017AGK-XXX-BE9, 753017AGK-XXX-9EU

Note Connect the IC (Internally Connected) pin directly to Vdd.

Pin Identification			
BIAS	: LCD Power Supply Bias Control	PCL	: Programmable Clock
BP0-BP7	: Bit Port	PTO0-PTO2	: Programmable Timer Output 0-2
BUZ	: Buzzer Clock	RESET	: Reset Input
COMO-COM3	: Common Output 0-3	S0-S31	: Segment Output 0-31
IC	: Internally Connected	SB0, SB1	: Serial Bus 0, 1
INT0, INT1, INT4	: External Vectored Interrupt 0, 1, 4	$\overline{\text { SCK }}$: Serial Clock
INT2	: External Test Input 2	SI	: Serial Input
KR0-KR7	: Key Return	SO	: Serial Output
LCDCL	: LCD Clock	SYNC	: LCD Synchronization
P00-P03	: Port 0	TIO-TI2	: Timer Input 0-2
P10-P13	: Port 1	Vdd	: Positive Power Supply
P20-P23	: Port 2	Vlco-Vlc2	: LCD Power Supply 0-2
P30-P33	: Port 3	Vss	: Ground
P40-P43	: Port 4	X1, X2	: Main System Clock Oscillation 1, 2
P50-P53	: Port 5	XT1, XT2	: Subsystem Clock Oscillation 1, 2
P60-P63	: Port 6		
P70-P73	: Port 7		

3. PIN FUNCTION

3.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit Type ${ }^{\text {Note }} 1$
P00	Input	INT4	4-bit input port (PORTO). For P01 to P03, connection of on-chip pullup resistors can be specified by software in 3-bit units.	No	Input	
P01		$\overline{\text { SCK }}$				$<\mathrm{F}>-\mathrm{A}$
P02		SO/SB0				$<\mathrm{F}>-\mathrm{B}$
P03		SI/SB1				$<\mathrm{M}>-\mathrm{C}$
P10	Input	INTO	4-bit input port (PORT1). Connection of on-chip pull-up resistors can be specified by software in 4-bit units. Only P10/INT0 can select noise elimination circuit.	No	input	$<\mathrm{B}>-\mathrm{C}$
P11		INT1				
P12		TI1/TI2/INT2				
P13		TIO				
P20	I/O	PTO0	4-bit input/output port (PORT2). Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	No	Input	E-B
P21		PTO1				
P22		PCL/PTO2				
P23		$B \cup Z$				
P30	1/O	LCDCL	Programmable 4-bit input/output port (PORT3). This port can be specified for input/output bit-wise. Connection of on-chip pull-up resistor can be specified by software in 4-bit units.	No	Input	E-B
P31		SYNC				
P32		-				
P33		-				
P40-P43 ${ }^{\text {Note }} 2$	I/O	-	N-ch open-drain 4-bit input/output port (PORT4). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.	Yes	High level (when pullup resistors are provided) or high impedance	M-D
P50-P53 ${ }^{\text {Note } 2}$	1/O	-	N-ch open-drain 4-bit input/output port (PORT5). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.		High level (when pullup resistors are provided) or high impedance	M-D

Notes 1. Circuit types enclosed in brackets indicate the Schmitt trigger input.
2. If on-chip pull-up resistors are not specified by mask option (when used as N -ch open-drain input port), low level input leakage current increases when input or bit manipulation instruction is executed.

3.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function	$\left\lvert\, \begin{gathered} \text { 8-bit } \\ \text { I/O } \end{gathered}\right.$	After Reset	I/O Circuit Type ${ }^{\text {Note }} 1$
P60	I/O	KR0	Programmable 4-bit input/output port (PORT6). This port can be specified for input/output bit-wise. Connection of on-chip pull-up resistors can be specified by software in 4-bit units.	Yes	Input	<F>-A
P61		KR1				
P62		KR2				
P63		KR3				
P70	I/O	KR4	4-bit input/output port (PORT7). Connection of on-chip pull-up resistors can be specified by software in 4-bit units.		Input	<F>-A
P71		KR5				
P72		KR6				
P73		KR7				
BP0	Output	S24	1-bit output port (BIT PORT). Also used for segment output pins.	No	Note 2	H-A
BP1		S25				
BP2		S26				
BP3		S27				
BP4	Output	S28				
BP5		S29				
BP6		S30				
BP7		S31				

Notes 1. Circuit types enclosed in brackets indicate the Schmitt trigger input.
2. BP0 through BP7 select VLC1 as an input source.

However, the output levels change depending on the external circuit of BP0 through BP7 and VLc1.

Example Because BP0 through BP7 are mutually connected inside the μ PD753017A, the output levels of BP0 through BP7 are determined by R_{1}, R_{2}, and R_{3}.

3.2 Non-port Pins (1/2)

Pin Name	1/O	Alternate Function	Function		After Reset	I/O Circuit Type ${ }^{\text {Note }} 1$
TIO	Input	P13	Inputs external event pulses to the timer/event counter.		Input	$-C$
TI1		P12/INT2				
TI2						
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22/PCL				
PCL		P22/PTO2	Clock output			
BUZ		P23	Optional frequency output (for buzzer output or system clock trimming)			
$\overline{\text { SCK }}$	1/0	P01	Serial clock input/output		Input	<F>-A
SO/SB0		P02	Serial data output Serial data bus input/output			<F>-B
SI/SB1		P03	Serial data input Serial data bus input/output			<M>-C
INT4	Input	P00	Edge detection vectored interrupt input (both rising edge and falling edge detection)		Input	
INTO	Input	P10	Edge detection vectored interrupt input (detection edge can be selected) INT0/P10 can select noise elimination circuit.	Noise elimination circuit/asynchronous selection	Input	$<\mathrm{B}>-\mathrm{C}$
INT1		P11		Asynchronous		
INT2	Input	P12/TI1/TI2	Rising edge detection testable input	Asynchronous	Input	-C
KR0-KR3	Input	P60-P63	Falling edge detection testable input		Input	$<\mathrm{F}>-\mathrm{A}$
KR4-KR7	Input	P70-P73	Falling edge detection testable input		Input	<F>-A
S0-S23	Output	-	Segment signal output		Note 2	G-A
S24-S31	Output	BP0-BP7	Segment signal output		Note 2	H-A
COMO-COM3	Output	-	Common signal output		Note 2	G-B
VLCo-VLC2	-	-	LCD drive power On-chip split resistor is enable (mask option).		-	-
BIAS	Output	-	Output for external split resistor disconnect		Note 3	-
LCDCL ${ }^{\text {Note } 4}$	Output	P30	Clock output for externally expanded driver		Input	E-B
SYNC ${ }^{\text {Note }} 4$	Output	P31	Clock output for externally expanded driver synchronization		Input	E-B

Notes 1. Circuit types enclosed in brackets indicate the Schmitt trigger input.
2. Each display output selects the following VLCx as input source.

S0-S31: Vlc1, COM0-COM2: Vlc2, COM3: Vlco
3. When a split resistor is contained Low level

When no split resistor is contained High impedance
4. These pins are provided for future system expansion. At present, these pins are used only as pins P30 and P31.

3.2 Non-port Pins (2/2)

Pin Name	1/O	Alternate Function	Function	After Reset	I/O Circuit Type ${ }^{\text {Note }}$
X1	Input	-	Crystal/ceramic connection pin for the mainsystem clock oscillation. When inputting the external clock, input the external clock to pin X1, and the inverted phase of the external clock to pin X2.	-	-
X2	-	-			
XT1	Input	-	Crystal connection pin for the subsystem clock oscillation. When the external clock is used, input the external clock to pin XT1, and the inverted phase of the external clock to pin XT2. Pin XT1 can be used as a 1-bit input (test) pin.	-	-
XT2	-				
RESET	Input	-	System reset input (low level active)	-	
IC	-	-	Internally connected. Connect directly to Vdo.	-	-
V ${ }_{\text {DD }}$	-	-	Positive power supply	-	-
Vss	-	-	GND	-	-

Note Circuit types enclosed in brackets indicate the Schmitt trigger input.

3.3 Pin Input/Output Circuits

The μ PD753017A pin input/output circuits are shown schematically.
TYPE A

3.4 Recommended Connection for Unused Pins

Table 3-1. List of Recommended Connection for Unused Pins

Pin	Recommended Connection
P00/INT4	Connect to Vss or Vdd
P01/SCK	Connect to Vss or Vod via a resistor individually
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0, P11/INT1	Connect to Vss or Vdd
P12/TI1/TI2/INT2	
P13/TI0	
P20/PTO0	Input: Connect to Vss or Vdd via a resistor individually Output: Leave open
P21/PTO1	
P22/PTO2/PCL	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32	
P33	
P40-P43	Input: Connect to Vss Output: Connect to Vss (do not connect a pull-up resistor of mask option)
P50-P53	
P60/KR0-P63/KR3	Input: Connect to Vss or Vdd via a resistor individually Output: Leave open
P70/KR4-P73/KR7	
S0-S23	Leave open
S24/BP0-S31/BP7	
COM0-COM3	
V Lco-Vlc2	Connect to Vss
BIAS	Only if all of VLco-VLC2 are unused, connect to V ${ }_{\text {Ss }}$. In other cases, leave open.
XT1	Connect to Vss
XT2 ${ }^{\text {Note }}$	Leave open
IC	Connect to Vod directly

Note When the subsystem clock is not used, set SOS. 0 to 1 (so as not to use the internal feedback resistor).

4. SWITCHING FUNCTION BETWEEN MkI MODE AND Mk II MODE

4.1 Differences between Mk I Mode and Mk II Mode

The CPU of μ PD753017A has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by the bit 3 of the stack bank select register (SBS).

- Mk I mode: Upward compatible with μ PD75316B.

Can be used in the 75 XL CPU with a ROM capacity of up to 16 K bytes.

- Mk II mode: Incompatible with μ PD75316B.

Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16K bytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I Mode	Mk II Mode
Program memory (bytes)	$\bullet \mu \mathrm{PD} 753012 \mathrm{~A}: 12288$ 	$\cdot \mu \mathrm{PD} 753016 \mathrm{~A}, 753017 \mathrm{~A}: 16384$ \bullet
Number of stack bytes for subroutine instructions	2 bytes	$\mu \mathrm{PD} 753017 \mathrm{~A}: 12288$
BRA !addr1 instruction CALLA !addr1 instruction	Not available	3 bytes
CALL !addr instruction	3 machine cycles	Available
CALLF !faddr instruction	2 machine cycles	4 machine cycles

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL series. Therefore, this mode is effective for enhancing software compatibility with products exceeding 16 Kbytes.
When the Mk II mode is selected, the number of stack bytes used during execution of subroutine call instructions increases by one byte per stack compared to the Mk I mode. When the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by one machine cycle. Therefore, use the Mk I mode if the RAM efficiency and processing performance are more important than software compatibility.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the stack bank select register (SBS). Figure 4-1 shows the format.

The SBS is set by a 4-bit memory manipulation instruction. When using the MkI mode, the SBS must be initialized to $10 \times X B^{\text {Note }}$ at the beginning of a program. When using the Mk II mode, it must be initialized to 00XXB ${ }^{\text {Note }}$.

Note Set the desired value in the XX positions.

Figure 4-1. Stack Bank Select Register Format

Caution Since SBS. 3 is set to " 1 " after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to " 0 " to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program memory (ROM) 12288×8 bits (μ PD753012A)
............... 16384×8 bits (μ PD753016A)
............... 24576×8 bits (μ PD753017A)
Addresses 0000 H and 0001 H
Vector table wherein the program start address and the values set for the RBE and MBE at the time a $\overline{R E S E T}$ signal is generated are written. Reset start is possible from any address.
- Addresses 0002H to 000DH

Vector table wherein the program start address and the values set for the RBE and MBE by each vectored interrupt are written. Interrupt processing can start from any address.
Addresses 0020H to 007FH
Table area referenced by the GETI instruction ${ }^{\text {Note }}$.

Note The GETI instruction realizes a 1-byte instruction on behalf of any 2-byte/3-byte instruction, or two 1byte instructions. It is used to decrease the number of program steps.

- Data memory (RAM)
- Data area ... 1024 words $\times 4$ bits (000H to 3FFH)
- Peripheral hardware area... 128×4 bits (F80H to FFFH)

Figure 5-1. Program Memory Map (1/3)
(a) μ PD753012A

Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order 8 bits of PC by executing the BR PCDE, BR PCXA instruction.

Figure 5-1. Program Memory Map (2/3)
(b) μ PD753016A

Note Can be used only in the Mk II mode.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order 8 bits of PC by executing the BR PCDE, BR PCXA instruction.

Figure 5-1. Program Memory Map (3/3)
(c) μ PD753017A

Note Can be used only in the Mk II mode.
Caution The interrupt vector start address shown above consists of 14 bits. Set it in 16 K space (0000H3FFFH).
Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order 8 bits of PC by executing the BR PCDE, BR PCXA instruction.

Figure 5-2. Data Memory Map

Note For stack area, one memory bank can be selected among memory banks 0 to 3 .

6. PERIPHERAL HARDWARE FUNCTIONS

6.1 Digital Input/Output Ports

There are four types of I/O ports as follows.

. CMOS input (PORT0, 1)	$: 8$
. CMOS input/output (PORT2, 3, 6, 7)	$: 16$
• N-channel open-drain input/output (PORT4, 5)	$: 8$
• Bit port output (BP0-BP7)	$: 8$
Total	40

Table 6-1. Types and Features of Digital Ports

Port (Pin Name)	Function	Operation and Features		Remarks
PORTO (P00-P03)	4-bit input	When the serial interface function is used, the alternate function pins function as output ports depending on the operation mode.		Also used for the INT4, SCK, SO/SB0, SI/SB1 pins.
PORT1 (P10-P13)		Input-only port		Also used for the INTOINT2 and TIO-TI2 pins.
PORT2 (P20-P23)	4-bit I/O	Can be set to input mode or output mode in 4-bit units.		Also used for the PTOOPTO2, PCL, BUZ pins.
PORT3 (P30-P33)		Can be set to input mode or output mode in $1 / 4$-bit units.		Also used for the LCDCL, SYNC pins.
PORT4 (P40-P43)	4-bit I/O (N -channel open-drain, 13 V withstanding)	Can be set to input mode or output mode in 4-bit units.	Ports 4 and 5 are paired and data can be input/ output in 8 -bit units.	On-chip pull-up resistor can be specified bit-wise by mask option.
PORT5 (P50-P53)				
PORT6 (P60-P63)	4-bit I/O	Can be set to input mode or output mode in $1 / 4$-bit units.	Ports 6 and 7 are paired and data can be input/ output in 8-bit units.	Also used for the KR0-KR3 pins.
PORT7 (P70-P73)		Can be set to input mode or output mode in 4-bit units.		Also used for the KR4-KR7 pins.
BP0-BP7	1-bit output	Outputs data bit-wise. Can be switched to LCD drive segment output S24-S31 by software.		-

6.2 Clock Generator

Operation of the clock generator is determined by the processor clock control register (PCC) and system clock control register (SCC).

The two clocks, the main system clock and subsystem clock, are available.
The instruction excution time can be altered.

- $0.95 \mu \mathrm{~s}, 1.91 \mu \mathrm{~s}, 3.81 \mu \mathrm{~s}, 15.3 \mu \mathrm{~s}$ (main system clock : at 4.19 MHz operation)
- $0.67 \mu \mathrm{~s}, 1.33 \mu \mathrm{~s}, 2.67 \mu \mathrm{~s}, 10.7 \mu \mathrm{~s}$ (main system clock : at 6.0 MHz operation)
- $122 \mu \mathrm{~s}$ (subsystem clock : at 32.768 kHz operation)

Figure 6-1. Clock Generator Block Diagram

Note Instruction execution

Remarks 1. $\mathrm{fx}_{\mathrm{x}}=$ Main system clock frequency
2. $\mathrm{f}_{\mathrm{XT}}=$ Subsystem clock frequency
3. $\Phi=$ CPU clock
4. PCC: Processor Clock Control Register
5. SCC: System Clock Control Register
6. One clock cycle (tcy) of Φ equal to one machine cycle of the instruction.

6.3 Subsystem Clock Oscillator Control Functions

The μ PD753017A subsystem clock oscillator has the following two control functions.

- Selects by software whether an internal feedback resistor is to be used or not ${ }^{\text {Note }}$.
- Reduces current consumption by decreasing the drive current of the on-chip inverter when the supply voltage is high ($\mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$).

Note When the subsystem clock is not used, set SOS. 0 to 1 (so as not to use the internal feedback resistor) by software, connect XT1 to Vss, and open XT2. This makes it possible to reduce the current consumption in the subsystem clock oscillator.

The above functions can be used by switching the bits 0 and 1 of the sub-oscillator control register (SOS). (See Figure 6-2.)

Figure 6-2. Subsystem Clock Oscillator

6.4 Clock Output Circuit

The clock output circuit is provided to output the clock pulses from the P22/PTO2/PCL pin to the application of remote control wave outputs and peripheral LSI's.

- Clock output (PCL) : $\Phi, 524,262,65.5 \mathrm{kHz}$ (at 4.19 MHz operation)
$\Phi, 750,375,93.8 \mathrm{kHz}$ (at 6.0 MHz operation)

Figure 6-3. Clock Output Circuit Block Diagram

Remark Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

6.5 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.

- Interval timer operation to generate a reference time interrupt
- Watchdog timer operation to detect a runaway of program and reset the CPU
- Selects and counts the wait time when the standby mode is released
- Reads the contents of counting

Figure 6-4. Basic Interval Timer/Watchdog Timer Block Diagram

Note Instruction execution

6.6 Watch Timer

The μ PD753017A has one channel of watch timer. The watch timer has the following functions.

- Sets the test flag (IRQW) with 0.5 sec interval.

The standby mode can be released by the IRQW.

- 0.5 sec interval can be created by both the main system clock (4.19 MHz) and subsystem clock (32.768 kHz).
- Convenient for program debugging and checking as interval becomes 128 times longer (3.91 ms) with the fast feed mode.
- Outputs the frequencies (2.048, 4.096, 32.768 kHz) to the P23/BUZ pin, usable for buzzer and trimming of system clock oscillation frequencies.
- Clears the frequency divider to make the clock start with zero seconds.

Figure 6-5. Watch Timer Block Diagram

The values enclosed in parentheses are applied when $f x=4.19 \mathrm{MHz}$ and $\mathrm{fx}=32.768 \mathrm{kHz}$.

6.7 Timer/Event Counter

The μ PD753017A has three channels of timer/event counter. The timer/event counter has the following functions.

- Programmable interval timer operation
- Square wave output of any frequency to the PTOn pin ($\mathrm{n}=0,1$)
- Event counter operation
- Divides the frequency of signal input via the TIn pin to 1-Nth of the original signal and outputs the divided frequency to the PTOn pin (frequency division operation).
- Supplies the shift clock to the serial interface circuit (channel 0 only).
- Calls the count value.

The timer/event counter operates in the following four modes as set by the mode register.

Table 6-2. Operation Modes of Timer/Event Counter

Mode	Channel		
8-bit timer/event counter mode			
	Gate control function	Nonote	No
PWM pulse generator mode	No	Yes	
16-bit timer/event counter mode			
	Gate control function	No Note	Yes
Carrier generator mode	No	Yes	

Note Used for gate control signal generation

Figure 6-7. Timer/Event Counter Block Diagram (Channel 1)

6.8 Serial Interface

The μ PD753017A is provided with an 8 -bit clocked serial interface. This serial interface operates in the following four modes:

- Operation stop mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode
- SBI mode

6．9 LCD Controller／Driver

The μ PD753017A incorporates a display controller which generates segment and common signals according to the display data memory contents and incorporates segment and common drivers which can drive the LCD panel directly．

The μ PD753017A LCD controller／driver functions are as follows：
－Display data memory is read automatically by DMA operation and segment and common signals are generated．
－Display mode can be selected from among the following five：
〈1〉 Static
〈2〉 $1 / 2$ duty（time multiplexing by 2）， $1 / 2$ bias
〈3〉 $1 / 3$ duty（time multiplexing by 3 ）， $1 / 2$ bias
$\langle 4\rangle 1 / 3$ duty（time multiplexing by 3 ）， $1 / 3$ bias
$\langle 5\rangle 1 / 4$ duty（time multiplexing by 4 ）， $1 / 3$ bias
－A frame frequency can be selected from among four in each display mode．
－A maximum of 32 segment signal output pins（S0－S31）and four common signal output pins（COM0－COM3）．
－The segment signal output pins（S24－S27 and S28－S31）can be changed to the output ports in 4－pin units．
－Split－resistor can be incorporated to supply LCD drive power（mask option）．
－Various bias methods and LCD drive voltages can be applicable．
－When display is off，current flow to the split resistor is cut．
－Display data memory not used for display can be used for normal data memory．
－It can also operate by using the subsystem clock．

6.10 Bit Sequential Buffer ... 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing a long data bit-wise.

Figure 6-11. Bit Sequential Buffer Format

Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MBS specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

μ PD753017A has eight types of interrupt sources and two types of test sources. Among the test sources, INT2
is provided with two testable inputs for edge detection.
μ PD753017A has the following functions in the interrupt control circuit.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IEXXX) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Nesting interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQXXX). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.
(2) Test function
- Test request flag (IRQXXX) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

Figure 7-1. Interrupt Control Circuit Block Diagram

Note Noise elimination circuit (Standby release is disabled when noise elimination circuit is selected.)

8. STANDBY FUNCTION

In order to save power consumption while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD753017A.

Table 8-1. Operation Status in Standby Mode

			STOP Mode	HALT Mode
	Set instruction		STOP instruction	HALT instruction
	System clock when set		Settable only when the main system clock is used.	Settable both by the main system clock and subsystem clock.
	Operation status	Clock generator	Only the main system clock stops oscillation.	Only the CPU clock Φ halts (oscillation continues).
		Basic interval timer/ watchdog timer	Operation stops	Operation. (The IRQBT is set in the reference interval.) ${ }^{\text {Note } 1}$
		Serial interface	Operable only when an external $\overline{\text { SCK }}$ input is selected as the serial clock.	Operable ${ }^{\text {Note } 1}$
		Timer/event counter	Operable only when a signal input to the TIO-TI2 pins is specified as the count clock.	Operable ${ }^{\text {Note } 1}$
		Watch timer	Operable when $\mathrm{fxx}_{\mathrm{x}}$ is selected as the count clock.	Operable
		LCD controller/driver	Operable only when $\mathrm{fxt}_{\mathrm{t}}$ is selected as the LCDCL.	Operable
		External interrupt	The INT1, 2, and 4 are operable. Only the INTO is not operated. ${ }^{\text {Note } 2}$	
		CPU	The operation stops.	
	Release signals		- Interrupt request signal sent from the operable hardware enabled by the interrupt enable flag. - Test request signal sent from the test source enabled by the test enable flag. - $\overline{\text { RESET }}$ input	

Notes 1. Cannot operate only when the main system clock stops.
2. Can operate only when the noise elimination circuit is not used $(\mathrm{IMO2}=1)$ by bit 2 of the edge detection mode register (IMO).

9. RESET FUNCTION

There are two reset inputs: external reset signal ($\overline{\mathrm{RESET}}$) and reset signal sent from the basic interval timer/ watchdog timer. When either one of the reset signals are input, an internal reset signal is generated. Figure 91 shows the circuit diagram of the above two inputs.

Figure 9-1. Configuration of Reset Function

The μ PD753017A is set by the $\overline{\text { RESET }}$ signal generated and each hardware is initialized as listed in Table $9-1$. Figure $9-2$ shows the timing chart of the reset operation.

Figure 9-2. Reset Operation by $\overline{\text { RESET }}$ Signal Generation

Note The following two times can be selected by the mask option.
$2^{17} / \mathrm{fx}(21.8 \mathrm{~ms}$: at 6.0 MHz operation, 31.3 ms : at 4.19 MHz operation)
$2^{15} / \mathrm{fx}(5.46 \mathrm{~ms}$: at 6.0 MHz operation, 7.81 ms : at 4.19 MHz operation)

Table 9-1. Status of Each Hardware after Reset (1/2)

Hardware			$\overline{\text { RESET Signal Generation }}$ in Standby Mode	$\overline{\text { RESET Signal Generation }}$ in Operation
Program counter (PC)			Sets the low-order 6 bits of program memory's address 0000H to the PC13-PC8 and the contents of address 0001 H to the PC7-PC0. Resets the PC14 of the μ PD753017A to 0 .	Sets the low-order 6 bits of program memory's address 0000 H to the PC13-PC8 and the contents of address 0001 H to the PC7-PC0. Resets the PC14 of the μ PD753017A to 0 .
PSW	Carry flag (CY)		Held	Undefined
	Skip flag (SK0-SK2)		0	0
	Interrupt status flag (IST0)		0	0
	Bank enable flag (MBE, RBE)		Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.
Stack pointer (SP)			Undefined	Undefined
Stack bank select register (SBS)			1000B	1000B
Data memory (RAM)			Held	Undefined
General-purpose register (X, A, H, L, D, E, B, C)			Held	Undefined
Bank select register (MBS, RBS)			0, 0	0, 0
Basic interval timer/ watchdog timer		Counter (BT)	Undefined	Undefined
		Mode register (BTM)	0	0
		Watchdog timer enable flag (WDTM)	0	0
Timer/event counter (TO)		Counter (T0)	0	0
		Modulo register (TMODO)	FFH	FFH
		Mode register (TM0)	0	0
		TOEO, TOUT F/F	0, 0	0, 0
Timer/event counter (T1)		Counter (T1)	0	0
		Modulo register (TMOD1)	FFH	FFH
		Mode register (TM1)	0	0
		TOE1, TOUT F/F	0, 0	0, 0
Timer/event counter (T2)		Counter (T2)	0	0
		Modulo register (TMOD2)	FFH	FFH
		High level period setting modulo register (TMOD2H)	FFH	FFH
		Mode register (TM2)	0	0
		TOE2, TOUT F/F	0, 0	0, 0
		REMC, NRZ, NRZB	0, 0, 0	0, 0, 0
		TGE	0	0
Watch timer		Mode register (WM)	0	0

Table 9-1. Status of Each Hardware after Reset (2/2)

Hardware		$\overline{\text { RESET }}$ Signal Generation in Standby Mode	$\overline{\text { RESET Signal Generation }}$ in Operation
Serial interface	Shift register (SIO)	Held	Undefined
	Operation mode register (CSIM)	0	0
	SBI control register (SBIC)	0	0
	Slave address register (SVA)	Held	Undefined
Clock generator, clock output circuit	Processor clock control register (PCC)	0	0
	System clock control register (SCC)	0	0
	Clock output mode register (CLOM)	0	0
Sub-oscillator control register (SOS)		0	0
LCD controller/ driver	Display mode register (LCDM)	0	0
	Display control register (LCDC)	0	0
Interrupt function	Interrupt request flag (IRQXXX)	Reset (0)	Reset (0)
	Interrupt enable flag (IEXXX)	0	0
	Interrupt master enable flag (IME)	0	0
	INT0, 1, 2 mode registers (IM0, IM1, IM2)	0, 0, 0	0, 0, 0
	Interrupt priority selection register (IPS)	0	0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, PMGB)	0	0
	Pull-up resistor specification register (POGA)	0	0
Bit sequential buffer (BSB0-BSB3)		Held	Undefined

10. MASK OPTION

The μ PD753017A has the following mask options.

- P40-P43, P50-P53 mask options

On-chip pull-up resistors can be connected.
<1> On-chip pull-up resistors are specifiable bit-wise.
<2> On-chip pull-up resistors are not specifiable.

- Vlco-Vlcz pins, BIAS pin mask option

On-chip split resistor for LCD drive can be connected.
$<1>$ Split resistor is not connected.
<2> Four $10 \mathrm{k} \Omega$ (TYP.) split resistors are connected at the same time.
$<3>$ Four $100 \mathrm{k} \Omega$ (TYP.) split resistors are connected at the same time.

- Standby function mask option

Wait times can be selected by a RESET signal.
$<1>2^{17} / \mathrm{fx}(21.8 \mathrm{~ms}$: at $\mathrm{fx}=6.0 \mathrm{MHz}, 31.3 \mathrm{~ms}$: at $\mathrm{fx}=4.19 \mathrm{MHz})$
$<2>2^{15} / \mathrm{fx}(5.46 \mathrm{~ms}:$ at $\mathrm{fx}=6.0 \mathrm{MHz}, 7.81 \mathrm{~ms}:$ at $\mathrm{fx}=4.19 \mathrm{MHz})$

- Subsystem clock mask option

Use of the internal feedback resistor can be selected.
<1> Internal feedback resistor can be used.
(Switched ON/OFF via software)
<2> Internal feedback resistor cannot be used.
(Switched out in hardware)

11. INSTRUCTION SET

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to RA75X Assembler Package User's Manual_-Language (U12385E). If there are several elements, one of them is selected.
Capital letters and the + and - symbols are key words and are described as they are.
For immediate data, appropriate numbers and labels are described.
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, see User's Manual.

Expression Format	Description Method
$\begin{aligned} & \text { reg } \\ & \text { reg1 } \end{aligned}$	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
$\begin{aligned} & \text { rp } \\ & \text { rp1 } \\ & \text { rp2 } \\ & \text { rp' } \\ & \text { rp'1 } \end{aligned}$	XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' $B C, D E, H L, X A^{\prime}, B C^{\prime}, D E^{\prime}, H L^{\prime}$
rpa rpa1	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8 -bit immediate data or labe\|Note 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1 caddr faddr	$0000 \mathrm{H}-2 \mathrm{FFFH}$ immediate data or label (μ PD753012A) 0000H-3FFFH immediate data or label (μ PD753016A, 753017A) $0000 \mathrm{H}-5 \mathrm{FFFH}$ immediate data or label 12-bit immediate data or label 11-bit immediate data or label
taddr	$20 \mathrm{H}-7 \mathrm{FH}$ immediate data (where bit0 $=0$) or label
PORTn IEXXX RBn MBn	```PORT0-PORT7 IEBT, IET0-IET2, IE0-IE2, IE4, IECSI, IEW RB0-RB3 MB0, MB1, MB2, MB3, MB15```

Note mem can be only used even address in 8-bit data processing.
(2) Legend in explanation of operation

A	: A register; 4-bit accumulator
B	: B register
C	: C register
D	: D register
E	: E register
H	: H register
L	: L register
X	: X register
XA	: XA register pair; 8-bit accumulator
BC	: BC register pair
DE	: DE register pair
HL	: HL register pair
XA'	: XA' expanded register pair
BC'	: BC' expanded register pair
DE'	: DE' expanded register pair
HL'	: HL' expanded register pair
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n (n = 0-7)
IME	: Interrupt master enable flag
IPS	: Interrupt priority selection register
IEXXX	: Interrupt enable flag
RBS	: Register bank selection register
MBS	: Memory bank selection register
PCC	: Processor clock control register
: Separation between address and bit	
(XX)	: The contents addressed by XX
XXH	: Hexadecimal data

(3) Explanation of symbols under addressing area column

Remarks 1. MB indicates memory bank that can be accessed.
2. In *2, MB $=0$ independently of how MBE and MBS are set.
3. In *4 and *5, MB = 15 independently of how MBE and MBS are set.
4. * 6 to *11 indicate the areas that can be addressed.
(4) Explanation of number of machine cycles column
S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: $S=0$
- When the skipped instruction is a 1- or 2-byte instruction: $S=1$
- When the skipped instruction is a 3-byte instruction ${ }^{\text {Note }}: S=2$

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock Φ (= tcy); time can be selected from among four types by setting PCC.

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Transfer	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String effect A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String effect A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String effect B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @HL+	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$A \leftarrow($ rpa1 $)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$A \leftarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$X A \leftarrow($ mem $)$	*3	
		mem, A	2	2	$($ mem $) \leftarrow \mathrm{A}$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg1	2	2	$\mathrm{A} \leftarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftarrow r p^{\prime}$		
		reg1, A	2	2	reg $1 \leftarrow \mathrm{~A}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	$A \leftrightarrow(H L)$	*1	
		A, @HL+	1	$2+$ S	$A \leftrightarrow(H L)$, then $L \leftarrow L+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	2+S	$A \leftrightarrow(H L)$, then $L \leftarrow L-1$	*1	$L=F H$
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow$ (rpa1)	*2	
		XA, @HL	2	2	XA ${ }_{(H L)}$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow$ (mem)	*3	
		XA, mem	2	2	XA \leftrightarrow (mem)	*3	
		A, reg1	1	1	A \leftrightarrow reg 1		
		XA, rp'	2	2	$X A \leftrightarrow r p^{\prime}$		

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Table reference	MOVTNote 1	XA, @PCDE	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{13-8}+\mathrm{DE}\right)_{\text {вом }}$		
					$\begin{aligned} & \bullet \mu \text { PD }_{2} 53017 \mathrm{~A} \\ & \text { XA } \leftarrow\left(\mathrm{PC}_{14-8+\mathrm{DE}}\right) \text { вом } \end{aligned}$		
		XA, @PCXA	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{13-8+}{ }^{\text {- }} \text { (}\right)_{\text {вом }}$		
		XA, @BCDE ${ }^{\text {Note } 2}$	1	3	$X A \leftarrow\left(\mathrm{~B}_{1,0+}+\mathrm{CDE}\right)_{\text {Rom }}$	*6	
					$\begin{aligned} & \text { - } \mu \text { PD753017A } \\ & \text { XA } \leftarrow\left(\mathrm{B}_{2-0}+\mathrm{CDE}\right)_{\text {Rом }} \end{aligned}$	*11	
		XA, @BCXA ${ }^{\text {Note } 2}$	1	3	$X A \leftarrow\left(\mathrm{~B}_{1,0+}+\mathrm{CXA}\right)_{\text {rом }}$	*6	
					$\begin{aligned} & \bullet \mu \text { PD753017A } \\ & \text { XA } \leftarrow\left(\mathrm{B}_{2-0}+\mathrm{CXA}\right)_{\text {Roм }} \end{aligned}$	*11	
Bit transfer	MOV1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow$ (fmem. $\mathrm{bit}^{\text {a }}$	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow\left(\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})}\right.$	*1	
		fmem.bit, CY	2	2	(fmem. ${ }^{\text {bit) }} \leftarrow \leftarrow \mathrm{CY}$	*4	
		pmem.@L, CY	2	2	$\left(\right.$ pmem $\left._{7-2+L^{2}-2 .} \operatorname{bit}^{\left(L L_{1-0}\right)}\right) \leftarrow \mathrm{CY}$	*5	
		@H+mem.bit, CY	2	2	$\left(\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit}}\right) \leftarrow \mathrm{CY}$	*1	
Operation	ADDS	A, \#n4	1	1+S	$A \leftarrow A+n 4$		carry
		XA, \#n8	2	$2+S$	$\mathrm{XA} \leftarrow \mathrm{XA}+\mathrm{n} 8$		carry
		A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$	*1	carry
		XA, rp'	2	$2+S$	$\mathrm{XA} \leftarrow \mathrm{XA}+\mathrm{rp}{ }^{\prime}$		carry
		rp'1, XA	2	$2+S$	rp '1 $\leftarrow \mathrm{rp}$ '1+XA		carry
	ADDC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A+r p^{\prime}+C Y$		
		rp'1, XA	2	2	$r p^{\prime} 1, \mathrm{CY} \leftarrow \mathrm{rp}$ '1+XA +CY		
	SUBS	A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}-(\mathrm{HL})$	*1	borrow
		XA, rp'	2	$2+$ S	$\mathrm{XA} \leftarrow \mathrm{XA}-\mathrm{rp}{ }^{\prime}$		borrow
		rp'1, XA	2	2+S	$r p^{\prime} 1 \leftarrow r p^{\prime} 1-X A$		borrow
	SUBC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	
		XA, rp'	2	2	$\mathrm{XA}, \mathrm{CY} \leftarrow \mathrm{XA}-\mathrm{rp}{ }^{\prime}-\mathrm{CY}$		
		rp'1, XA	2	2	$r p^{\prime} 1, C Y \leftarrow r p^{\prime} 1-X A-C Y$		

Notes 1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. Only the following bits are valid for the B register.
μ PD753012A, 753016A : low-order 2 bits
μ PD753017A : low-order 3 bits

Remark When the μ PD753017A is set in the Mk I mode, PC_{14} is fixed to 0 .

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Operation	AND	A, \#n4	2	2	$A \leftarrow A \wedge n 4$		
		A, @HL	1	1	$\mathrm{A} \leftarrow \mathrm{A} \wedge(\mathrm{HL})$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \wedge r p^{\prime}$		
		rp'1, XA	2	2	$\mathrm{rp}{ }^{\prime} 1 \leftarrow \mathrm{rp}$ '1 $\wedge \mathrm{XA}$		
	OR	A, \#n4	2	2	$A \leftarrow A \vee n 4$		
		A, @HL	1	1	$A \leftarrow A \vee(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \vee r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\vee \mathrm{XA}$		
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \forall r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\forall \mathrm{XA}$		
Accumulator manipulation	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{n-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		
Increment and Decrement	INCS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		rp1	1	$1+$ S	$\mathrm{rp} 1 \leftarrow \mathrm{rp1} 1+1$		$\mathrm{rp1}=00 \mathrm{H}$
		@HL	2	$2+$ S	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	$2+$ S	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	$2+$ S	$\mathrm{rp}^{\prime} \leftarrow r p^{\prime}-1$		rp' $=$ FFH
Comparison	SKE	reg, \#n4	2	$2+$ S	Skip if reg $=\mathrm{n} 4$		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	$2+$ S	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	1+S	Skip if $A=(H L)$	*1	$A=(H L)$
		XA, @HL	2	$2+$ S	Skip if $\mathrm{XA}=(\mathrm{HL})$	*1	$X A=(H L)$
		A, reg	2	$2+$ S	Skip if $A=r e g$		$A=r e g$
		XA, rp'	2	$2+$ S	Skip if $X A=r p^{\prime}$		$X A=r p^{\prime}$
Carry flag manipulation	SET1	CY	1	1	$\mathrm{CY} \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	$1+$ S	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Memory bit manipulation	SET1	mem.bit	2	2	(mem. bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 1$	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $\left._{7-2+L_{3-2} . \operatorname{bit}\left(L_{1-0}\right)}\right) \leftarrow 1$	*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0 .}$. bit$) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem. bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	$($ fmem. bit) $) \leftarrow 0$	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $\left._{7-2}+\mathrm{L}_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right) \leftarrow 0$	*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $\left._{3-0 . \mathrm{bit}}\right) \leftarrow 0$	*1	
	SKT	mem.bit	2	$2+$ S	Skip if (mem. bit)=1	*3	$(\mathrm{mem} . \mathrm{bit})=1$
		fmem.bit	2	$2+S$	Skip if (fmem. bit) $=1$	*4	(fmem.bit) $=1$
		pmem.@L	2	$2+S$	Skip if (pmem7-2+L3-2.bit $\left(\mathrm{L}_{1-0}\right)$) $=1$	*5	(pmem.@L)=1
		@H+mem.bit	2	$2+$ S	Skip if ($\mathrm{H}+$ mem $_{3-\mathrm{o}}$. bit) $=1$	*1	$(@ H+m e m . b i t)=1$
	SKF	mem.bit	2	$2+S$	Skip if (mem. bit) $=0$	*3	$(\mathrm{mem} . \mathrm{bit})=0$
		fmem.bit	2	$2+S$	Skip if (fmem. bit) $=0$	*4	$($ fmem.bit) $=0$
		pmem.@L	2	$2+$ S	Skip if (pmem7-2+L3-2.bit (L1-0)) =0	*5	(pmem.@L)=0
		@H+mem.bit	2	$2+S$	Skip if $\left(\mathrm{H}+\mathrm{mem}_{3-\text { - }}\right.$.bit $)=0$	*1	$(@ H+m e m$. bit $)=0$
	SKTCLR	fmem.bit	2	$2+$ S	Skip if (fmem.bit)=1 and clear	*4	(fmem.bit) $=1$
		pmem.@L	2	$2+$ S		*5	(pmem.@L)=1
		@H+mem.bit	2	$2+$ S	Skip if (H+mem ${ }_{3-\text {-0.bit })=1 \text { and clear }}$	*1	$(@ H+$ mem.bit) $=1$
	AND1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $_{3-\text { - } \mathrm{l}}$ bit $)$	*1	
	OR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit $)$	*1	
	XOR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{H}+\right.$ mem $_{3}{ }^{\text {-0. }}$. bit$)$	*1	

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Branch	$\mathrm{BR}^{\text {Note }} 1$	addr	-	-	$\left.\begin{array}{l} \mathrm{PC}_{13-0} \leftarrow \text { addr } \\ \text { Select appropriate instruction from } \\ \text { among the following instructions } \\ \text { according to the assembler being } \\ \text { used. } \\ \text { BR laddr } \\ \text { BRCB !caddr } \\ \text { BR \$addr } \end{array}\right)$	*6	
		addr1	-	-	- μ PD753012A, 753016A $\mathrm{PC}_{13-0} \leftarrow$ addr1 \qquad - μ PD753017A $\mathrm{PC}_{14-0} \leftarrow$ addr1 $\left(\begin{array}{l}\text { Select appropriate instruction from } \\ \text { among the following instructions } \\ \text { according to the assembler being } \\ \text { used. } \\ \text { BR laddr } \\ \text { BRA !addr1 } \\ \text { BRCB !caddr } \\ \text { BR \$addr1 }\end{array}\right)$	*11	
		laddr	3	3	$\mathrm{PC}_{13-0} \leftarrow$ addr - μ PD753017A $\mathrm{PC}_{14} \leftarrow 0, \mathrm{PC}_{13-0} \leftarrow$ addr	*6	
		\$addr	1	2	$\mathrm{PC}_{13-0} \leftarrow$ addr	*7	
		\$addr1	1	2	- μ PD753017A $\mathrm{PC}_{14-0} \leftarrow$ addr1		
		PCDE	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13-8}+\mathrm{DE}$		
					- μ PD753017A $\mathrm{PC}_{14-0} \leftarrow \mathrm{PC}_{14-8+\mathrm{DE}}$		
		PCXA	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13-8+} \mathrm{XA}$		
					$\begin{aligned} & \text { - } \mu \mathrm{PD}^{2} 753017 \mathrm{~A} \\ & \mathrm{PC}_{14-0} \leftarrow \mathrm{PC}_{14-8+}+\mathrm{XA} \end{aligned}$		
		BCDE ${ }^{\text {Note }} 2$	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{BCDE}$	*6	
					$\begin{aligned} & \text { - } \mu \text { PD753017A } \\ & \mathrm{PC}_{14-0} \leftarrow \mathrm{BCDE} \end{aligned}$	*11	
		BCXA ${ }^{\text {Note } 2}$	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{BCXA}$	*6	
					$\begin{aligned} & \text { - } \mu \mathrm{PD} 753017 \mathrm{~A} \\ & \mathrm{PC}_{14-0} \leftarrow \mathrm{BCXA} \end{aligned}$	*11	

Notes 1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. Only the following bits are valid for the B register.
μ PD753012A, 753016A : low-order 2 bits
μ PD753017A : low-order 3 bits

Remark When the μ PD753017A is set in the MkI mode, PC_{14} is fixed to 0 .

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Branch	BRA ${ }^{\text {Note }}$	laddr	3	3	- μ PD753012A, 753016A $\mathrm{PC}_{13-0} \leftarrow$ addr	*6	
		laddr1	3	3	$\begin{aligned} & \text { - } \mu \text { PD753017A } \\ & \text { PC }_{14-0} \leftarrow \text { addr1 } \end{aligned}$	*11	
	BRCB ${ }^{\text {Note }}$!caddr	2	2	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13,12}+$ caddr $_{11-0}$	*8	
					$\begin{aligned} & \text { - } \mu \mathrm{PD}^{2} 753017 \mathrm{~A} \\ & \mathrm{PC}_{14-0} \leftarrow \mathrm{PC}_{14,13,12+\text { caddr }_{11-0}} \end{aligned}$		
Subroutine stack control	CALLA ${ }^{\text {Note }}$!addr	3	3	- μ PD753012A, 753016A $(\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12}$ $(\mathrm{SP}-2) \leftarrow x, \times, \mathrm{MBE}$, RBE $\mathrm{PC}_{13-0} \leftarrow$ addr, $\mathrm{SP} \leftarrow \mathrm{SP}-6$	*6	
		!addr1	3	3	- μ PD753017A $(\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0, \mathrm{PC}_{14,13,12}$ $(\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}$, RBE $\mathrm{PC}_{14-0} \leftarrow$ addr1, $\mathrm{SP} \leftarrow \mathrm{SP}-6$	*11	
	CALL ${ }^{\text {Note }}$	laddr	3	3	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, \mathrm{PC}_{12} \\ & \mathrm{PC}_{13-0} \leftarrow \text { addr, } \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	*6	
				4	- μ PD753012A, 753016A (SP-6)(SP-3) $(S P-4) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12}$ $(\mathrm{SP}-2) \leftarrow x, \times, \mathrm{MBE}$, RBE $\mathrm{PC}_{13-0} \leftarrow$ addr, $\mathrm{SP} \leftarrow \mathrm{SP}-6$		
				4	- μ PD753017A $(\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0, \mathrm{PC}_{14,13,12}$ $(\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}$, RBE $\mathrm{PC}_{14} \leftarrow 0, \mathrm{PC}_{13-0} \leftarrow \operatorname{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-6$		
	CALLFNote	! faddr	2	2	$(S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, \mathrm{PC}_{12}$ $\mathrm{PC}_{13-0} \leftarrow 000$ +faddr, $\mathrm{SP} \leftarrow \mathrm{SP}-4$	*9	
				3	- μ PD753012A, 753016A $(S P-6)(S P-3)(S P-4) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12}$ $(\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}$, RBE $\mathrm{PC}_{13-0} \leftarrow 000$ +faddr, SP $\leftarrow \mathrm{SP}-6$		
				3	$\begin{aligned} & \text { - } \mu \text { PD753017A } \\ & \left(\text { SP-6)(SP-3)(SP-4) } \leftarrow \text { PC }_{11-0}\right. \\ & \left(\text { SP-5) } \leftarrow 0, \mathrm{PC}_{14,13,12}\right. \\ & (\text { SP-2) } \leftarrow x, \times, \mathrm{MBE}, \text { RBE } \\ & \text { PC }_{14-0} \leftarrow 0000+\text { faddr, SP } \leftarrow \text { SP-6 } \end{aligned}$		

Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Remark When the μ PD753017A is set in the Mk I mode, PC ${ }_{14}$ is fixed to 0 .

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Subroutine stack control	RETNote		1	3	```MBE, RBE, \(\mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)\) \(\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)\), \(\mathrm{SP} \leftarrow \mathrm{SP}+4\) - \(\mu\) PD753012A, 753016A \(\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4)\) \(0,0, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)\) \(\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6\) - \(\mu\) PD753017A \(\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4)\) \(0, \mathrm{PC}_{14}, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)\) \(\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6\)```		
	RETS ${ }^{\text {Note }}$		1	$3+$ S	$\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$, $\mathrm{SP} \leftarrow \mathrm{SP}+4$ then skip unconditionally - μ PD753012A, 753016A $\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4)$ $0,0, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6$ then skip unconditionally - μ PD753017A $\times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4)$ $0, \mathrm{PC}_{14}, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6$ then skip unconditionally		Unconditional
	RETINote	!faddr	1	3	$\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6$		

Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Remark When the μ PD753017A is set in the MkI mode, PC_{14} is fixed to 0 .

Instruction Group	Mnemonic	Operand	Number of Bytes	Number of Machine Cycles	Operation	Addressing Area	Skip Condition
Subroutine stack control	PUSH	rp	1	1	$(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{rp}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
		BS	2	2	$(\mathrm{SP}-1) \leftarrow \mathrm{MBS},(\mathrm{SP}-2) \leftarrow \mathrm{RBS}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
	POP	rp	1	1	$\mathrm{rp} \leftarrow(\mathrm{SP}+1)(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
		BS	2	2	$\mathrm{MBS} \leftarrow(\mathrm{SP}+1), \mathrm{RBS} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
Interrupt control	El		2	2	$\operatorname{IME}(\operatorname{IPS} .3) \leftarrow 1$		
		IEXXX	2	2	IEXXX $\leftarrow 1$		
	DI		2	2	$\operatorname{IME}(\operatorname{IPS} .3) \leftarrow 0$		
		IEXXX	2	2	IEXXX $\leftarrow 0$		
Input/output	IN ${ }^{\text {Note }} 1$	A, PORTn	2	2	$\mathrm{A} \leftarrow$ PORTn $\quad(\mathrm{n}=0-7)$		
		XA, PORTn	2	2	XA \leftarrow PORT $n+1$, PORTn $\quad(\mathrm{n}=4,6)$		
	OUTNote 1	PORTn, A	2	2	PORTn $\leftarrow \mathrm{A} \quad(\mathrm{n}=2-7)$		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow PA $\quad(\mathrm{n}=4,6)$		
CPU control	HALT		2	2	Set HALT mode (PCC. $2 \leftarrow 1$)		
	STOP		2	2	Set STOP mode (PCC. $3 \leftarrow 1$)		
	NOP		1	1	No operation		
Special	SEL	RBn	2	2	$\mathrm{RBS} \leftarrow \mathrm{n} \quad(\mathrm{n}=0-3)$		
		MBn	2	2	MBS $\leftarrow \mathrm{n} \quad(\mathrm{n}=0-3,15)$		
	GETINotes 2, 3	taddr	1	3	- When TBR instruction $\mathrm{PC}_{13-0} \leftarrow(\text { taddr })_{5-0}+($ taddr +1$)$ - When TCALL instruction $(S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, \mathrm{PC}_{12}$ $\mathrm{PC}_{13-0} \leftarrow($ taddr $) 5-0+$ (taddr+1$)$ $\mathrm{SP} \leftarrow \mathrm{SP}-4$ - When instruction other than TBR and TCALL instructions (taddr) (taddr +1) instruction is executed	*10	Depending on the reference instruction
			1	3 4	- μ PD753017A - When TBR instruction $\mathrm{PC}_{13-0} \leftarrow($ taddr $) 5-0+($ taddr +1$)$ $\mathrm{PC}_{14} \leftarrow 0$ - When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12} \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0} \leftarrow \text { (taddr) } 5-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-6, \mathrm{PC}_{14} \leftarrow 0 \end{aligned}$ - When instruction other than TBR and TCALL instructions (taddr) (taddr +1) instruction is executed		Depending on the reference instruction

Notes 1. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and MBS must be set to 15 .
2. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
3. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.

Remark When the μ PD753017A is set in the Mk I mode, PC_{14} is fixed to 0 .
12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	VDD			-0.3 to +7.0	V
Input voltage	V_{11}	Other than ports 4,5		-0.3 to $V_{\text {DD }}+0.3$	V
	V_{12}	Ports	Pull-up resistor provided	-0.3 to VDD +0.3	V
		4, 5	N -ch open-drain	-0.3 to +14	V
Output voltage	Vo			-0.3 to $V_{\text {DD }}+0.3$	V
High-level output current	Іон	Per pin		-10	mA
		Total of all pins		-30	mA
Low-level output current	IoL	Per pin		30	mA
		Total of all pins		220	mA
Operating ambient temperature	T_{A}			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

Main System Clock Oscillator Characteristics $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=1.8$ to 5.5 V$)$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) ${ }^{\text {Note }} 1$		1.0		6.0 ${ }^{\text {Note } 2}$	MHz
		Oscillation stabilization time ${ }^{\text {Note } 3}$	After Vod has reached MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (fx) ${ }^{\text {Note }} 1$		1.0		$6.0^{\text {Note } 2}$	MHz
		Oscillation stabilization time ${ }^{\text {Note } 3}$	$V_{D D}=4.5$ to 5.5 V			10	ms
						30	
External clock	$\mathrm{X}_{1} \quad \mathrm{X} 2$	X1 input frequency $(f x)^{\text {Note }} 1$		1.0		6.0№te 2	MHz
		X1 input high-, low-level width (txh, txL)		83.3		500	ns

Notes 1. The oscillation frequency and X 1 input frequency shown above indicate characteristics of the oscillator only. For the instruction execution time, refer to AC Characteristics.
2. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, do not set the processor clock control register (PCC) to 0011. If $\mathrm{PCC}=0011$, one machine cycle time is less than $0.95 \mu \mathrm{~s}$, falling short of the rated value of $0.95 \mu \mathrm{~s}$.
3. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied or STOP mode has been released.

Caution When using the main system clock oscillator, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator at the same potential as Vdd.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillator.

Recommended Oscillator Constant

Ceramic resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency (MHz)	Recommended Circuit Constant (pF)		Oscillation Voltage Range (V)		Remarks
			C1	C2	MIN.	MAX.	
TDK Corp.	CCR1000K2	1.0	100	100	1.8	5.5	-
	CCR2.0MC33	2.0	-	-			On-chip capacitor
	CCR4.19MC3	4.19					
	FCR4.19MC5						
	CCR6.0MC3	6.0					
Murata Mfg. Co., Ltd.	CSB1000JNote	1.0	100	100	2.1	5.5	$\mathrm{Rd}=5.6 \mathrm{k} \Omega$
	CSA2.00MG040	2.0	100	100	1.9		-
	CST2.00MG040		-	-			On-chip capacitor
	CSA4.19MG	4.19	30	30	1.8		-
	CST4.19MGW		-	-			On-chip capacitor
	CSA6.00MG	6.0	30	30	2.3		-
	CST6.00MGW		-	-			On-chip capacitor
Kyocera Corp.	KBR-1000F/Y	1.0	100	100	1.8	5.5	-
	KBR-2.0MS	2.0	68	68			
	KBR-4.0MSA/MSB	4.0	33	33			
	KBR-4.0MKC		-	-			On-chip capacitor
	KBR-4.0MKD						
	KBR-4.0MKS						
	PBRC4.00A	4.0	33	33			-
	PBRC4.00B		-	-			On-chip capacitor
	KBR-4.19MSA	4.19	33	33			-
	KBR-4.19MSB		33	33			
	KBR-4.19MKC		-	-			On-chip capacitor
	KBR-4.19MKD						
	KBR-4.19MKS						
	PBRC4.19A		33	33			-
	PBRC4.19B		-	-			On-chip capacitor
	KBR-6.0MSA/MSB	6.0	33	33			-
	KBR-6.0MKC		-	-			On-chip capacitor
	KBR-6.0MKD						
	KBR-6.0MKS						
	PBRC6.00A		33	33			-
	PBRC6.00B		-	-			On-chip capacitor

Note When using the CSB1000J (1.0 MHz) by Murata Mfg. Co., Ltd. as a ceramic resonator, a limiting resistor $(R d=5.6 \mathrm{k} \Omega)$ is necessary (refer to the figure below). The resistor is not necessary when using the other recommended resonators.

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency $(\mathrm{fxt})^{\text {Note }} 1$		32	32.768	35	kHz
		Oscillation	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V		1.0	2	ms
						10	
External clock		XT1 input frequency $(\mathrm{fxT})^{\text {Note }} 1$		32		100	kHz
		XT1 input high-, low-level width (tхтн, tхть)		5		15	$\mu \mathrm{s}$

Notes 1. The oscillation frequency shown above indicates characteristics of the oscillator only. For the instruction execution time, refer to AC Characteristics.
2. The oscillation stabilization time is the time required for oscillation to be stabilized after Vod has been applied.

Caution When using the subsystem clock oscillator, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows. - Always keep the ground point of the capacitor of the oscillator at the same potential as Vdd. - Do not ground to a power supply pattern through which a high current flows. - Do not extract signals from the oscillation circuit.

The subsystem clock oscillator has a low amplification factor to reduce current consumption and is more susceptible to noise than the main system clock oscillator. Therefore, exercise utmost care in wiring the subsystem clock oscillator.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Low-level output current	lot	Per pin					15	mA
		Total of all pins					150	mA
High-level input voltage	VIH1	Ports 2, 3		$V_{\text {DD }}=2.7$ to 5.5 V	0.7 VDD		VDD	V
				$V_{D D}=1.8$ to 2.7 V	0.9 VDD		VDD	V
	$\mathrm{V}_{\mathbf{1 + 2}}$	Ports 0, 1, 6, 7, $\overline{\text { RESET }}$		$V_{\text {DD }}=2.7$ to 5.5 V	0.8 VDD		VDD	V
				$V_{\text {DD }}=1.8$ to 2.7 V	0.9 VDD		VDD	V
	$\mathrm{V}_{\text {Нн }}$	Ports 4, 5	Pull-up resistor provided	$V_{D D}=2.7$ to 5.5 V	0.7 VDD		VDD	V
				$V_{D D}=1.8$ to 2.7 V	0.9 VDD		VDD	V
			N-ch open-drain	$V_{\text {DD }}=2.7$ to 5.5 V	0.7 VdD		13	V
				$V_{\text {DD }}=1.8$ to 2.7 V	0.9 VDD		13	V
	$\mathrm{V}_{1 \mathrm{H} 4}$	X1, XT1			$V_{\text {do }}-0.1$		VDD	V
Low-level input voltage	VIL1	Ports 2, 3, 4, 5		$V_{\text {DD }}=2.7$ to 5.5 V	0		0.3 VDD	V
				$\mathrm{V}_{\mathrm{DD}}=1.8$ to 2.7 V	0		0.1 VDD	V
	VIL2	Ports 0, 1, 6, 7, $\overline{\text { RESET }}$		$V_{\text {DD }}=2.7$ to 5.5 V	0		0.2 VDD	V
				$V_{\text {DD }}=1.8$ to 2.7 V	0		0.1 VDD	V
	VІІз	X1, XT1			0		0.1	V
High-level output voltage	Vон				VDD-0.5			V
Low-level output voltage	VoL1	SCK, SO, Ports 2-7, BPO-BP7		$\begin{aligned} & \mathrm{loL}=15 \mathrm{~mA} \\ & \mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		0.2	2.0	V
				$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
	Vol2	SB0, SB1	N -ch open-drain Pull-up resistor \geq				0.2 VDD	V
High-level input leakage current	ІІнн	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}$	Pins other than $\mathrm{X} 1, \mathrm{XT} 1$, ports 4, 5				3	$\mu \mathrm{A}$
	ІІн\%		X1, XT1				20	$\mu \mathrm{A}$
	ІІнз	V IN $=13 \mathrm{~V}$	Ports 4, 5 (N -ch open-drain)				20	$\mu \mathrm{A}$
Low-level input leakage current	ILLL1	$\mathrm{VIN}=0 \mathrm{~V}$	Pins other than $\mathrm{X} 1, \mathrm{XT1}$, ports 4, 5				-3	$\mu \mathrm{A}$
	ILLL2		X1, XT1				-20	$\mu \mathrm{A}$
	İı3		Ports 4, 5 (N-ch open-drain) When input instruction is not executed				-3	$\mu \mathrm{A}$
			Ports 4, 5 (N -ch open-drain) When input instruction is executed				-30	$\mu \mathrm{A}$
				$V_{D D}=5 \mathrm{~V}$		-10	-27	$\mu \mathrm{A}$
				$V_{D D}=3 \mathrm{~V}$		-3	-8	$\mu \mathrm{A}$
High-level output leakage current	ILOH1	Vout $=$ VDD	SCK, SO/SB0, SB1, ports 2, 3, 6, 7, ports 4, 5 (pull-up resistor provided), BP0-BP7				3	$\mu \mathrm{A}$
	ILoh2	Vout $=13 \mathrm{~V}$	Ports 4, 5 (N-ch open-drain)				20	$\mu \mathrm{A}$
Low-level output leakage current	ILoL	Vout $=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
Internal pull-up resistor	RL1	$\mathrm{VIN}=0 \mathrm{~V}$	Ports 0, 1, 2, 3, 6, 7 (except P00 pin)		50	100	200	$k \Omega$
	RL2		Ports 4, 5 (mask option selected)		15	30	60	$k \Omega$

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
LCD drive voltage ${ }^{\text {Note } 1}$	Vlcd	$\mathrm{VACO}=0$				2.2		Vdd	V
		VAC0 $=1$				1.8		VDD	V
VAC current ${ }^{\text {Note } 2}$	Ivac	$\mathrm{VACO}=1, \mathrm{VDD}=2.0 \mathrm{~V} \pm 10 \%$					1	4	$\mu \mathrm{A}$
LCD split resistorNote 3	Rlcdi					50	100	200	$\mathrm{k} \Omega$
	Rlcd2					5	10	20	$\mathrm{k} \Omega$
LCD output voltage deviation ${ }^{\text {Note }} 4$ (common)	Vodc	$\begin{aligned} & \mathrm{Io}= \\ & \pm 1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{L C D 0}=V_{L C D} \\ & V_{L C D 1}=V_{L C D} \times 2 / 3 \\ & V_{L C D 2}=V_{L C D} \times 1 / 3 \\ & 1.8 \mathrm{~V} \leq V_{L C D} \leq V_{D D} \end{aligned}$			0		± 0.2	V
LCD output voltage deviation ${ }^{\text {Note }} 4$ (segment)	Vods	$\begin{aligned} & \mathrm{Io}= \\ & \pm 0.5 \mu \mathrm{~A} \end{aligned}$				0		± 0.2	V
Supply current ${ }^{\text {Notes 2, }} 5$	IdD1	$6.00 \mathrm{MHz}^{\text {Note } 6}$ crystal oscillation $\begin{aligned} & \mathrm{C} 1=\mathrm{C} 2 \\ & =22 \mathrm{pF} \end{aligned}$	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$ Note 7				2.2	6.6	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$ Note 8				0.6	2.0	mA
	IDD2		HALT mode	$V_{D D}=5.0$	$\mathrm{V} \pm 10 \%$		0.72	2.1	mA
				$V_{D D}=3.0$	$\mathrm{V} \pm 10 \%$		0.27	0.8	mA
	IDD1	4.19 MHz ${ }^{\text {Note } 6}$ crystal oscillation $\begin{aligned} & \mathrm{C} 1=\mathrm{C} 2 \\ & =22 \mathrm{pF} \end{aligned}$	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10 \%$ Note 7				1.7	5.1	mA
			$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$ Note 8				0.3	0.9	mA
	IdD2		HALT mode	$V_{\text {dD }}=5.0$	$\mathrm{V} \pm 10 \%$		0.7	2.0	mA
				$V_{D D}=3.0$	$\mathrm{V} \pm 10 \%$		0.23	0.7	mA
	IdD3	32.768 kHz ${ }^{\text {Note }} 9$ crystal oscillation	Low voltage mode ${ }^{\text {Note } 10}$	$V_{\text {dD }}=3.0$	$\mathrm{V} \pm 10 \%$		15	45	$\mu \mathrm{A}$
				$V_{D D}=2.0$	$\mathrm{V} \pm 10 \%$		8	24	$\mu \mathrm{A}$
				$V_{\text {dd }}=3.0$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	30	$\mu \mathrm{A}$
			Low current consumption mode ${ }^{\text {Note } 11}$	$V_{\text {dD }}=3.0$	$\mathrm{V} \pm 10 \%$		12	36	$\mu \mathrm{A}$
				$V_{\text {dD }}=3.0$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		12	24	$\mu \mathrm{A}$
	IDD4		HALT mode	Low voltage mode ${ }^{\text {Note } 10}$	$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		8.5	25	$\mu \mathrm{A}$
					$V_{D D}=2.0 \mathrm{~V} \pm 10 \%$		4	12	$\mu \mathrm{A}$
					$V_{D D}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.5	17	$\mu \mathrm{A}$
				Low current consumption mode ${ }^{\text {Note }} 11$	$V_{\text {do }}=3.0 \mathrm{~V} \pm 10 \%$		3.5	12	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5	7	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=$ 0 VNote 12 STOP mode	$V_{\text {dD }}=5.0 \mathrm{~V} \pm 10 \%$				0.05	10	$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V} \pm 10 \%$				0.02	5	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	3	$\mu \mathrm{A}$

Notes 1. When $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}, \mathrm{~T} A=-10$ to $+85^{\circ} \mathrm{C}$.
2. Clear VACO to 0 in the low current consumption mode and STOP mode. When VAC0 is set to 1 , the current increases by about $1 \mu \mathrm{~A}$.
3. Either Rlcd1 or Rlcd2 can be selected by mask option.
4. Voltage deviation is the difference between the ideal values (VLCDn; $n=0,1,2$) of the segment and common outputs and the output voltage.
5. The current flowing through the internal pull-up resistor and the LCD divider resistor is not included.
6. Including the case when the subsystem clock oscillates.
7. When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
8. When the device operates in low-speed mode with PCC set to 0000.
9. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
10. When the sub-oscillator control register (SOS) is set to 0000.
11. When SOS is set to 0010 .
12. When SOS is set to 00X1, and the feedback resistor of the sub-oscillator is not used (X : don't care).

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time ${ }^{\text {Note } 1}$ (minimum instruction execution time $=1$ machine cycle)	tcy	Operates with	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V	0.67		64	$\mu \mathrm{s}$
		main system clock		0.95		64	$\mu \mathrm{s}$
		Operates with subsystem clock		114	122	125	$\mu \mathrm{s}$
TIO, TI1, TI2 input frequency	fti	$V_{\text {DD }}=2.7$ to 5.5 V		0		1	MHz
				0		275	kHz
TIO, TI1, TI2 input high-, low-level width	ttil, till			0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt input high-, low-level width	tinth, tintl	INTO	IM02 $=0$	Note 2			$\mu \mathrm{s}$
			IM02 $=1$	10			$\mu \mathrm{s}$
		INT1, 2, 4		10			$\mu \mathrm{s}$
		KR0-KR7		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. The cycle time of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator, the system clock control register (SCC), and processor clock control register (PCC). The figure on the right shows the supply voltage VDD vs. cycle time tcy characteristics when the device operates with the main system clock.
2. 2 tcy or $128 / \mathrm{fx}$ depending on the setting of the interrupt mode register (IM0).

Serial transfer operation

2-wire and 3-wire serial I/O modes ($\overline{S C K} \cdots$ internal clock output): ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high-, low-level width	$\begin{aligned} & \text { tKL1 } \\ & \text { tKH1 } \\ & \hline \end{aligned}$			tkcy/2-50			ns
		$V_{D D}=2.7 \text { to } 5.5 \mathrm{~V}$		tкcry $/ 2-150$			ns
SI ${ }^{\text {Note } 1}$ setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsık1	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V		150			ns
				500			ns
SINote 1 hold time (from $\overline{\text { SCK }} \uparrow$)	tksı1	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		400			ns
				600			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO ${ }^{\text {Note } 1}$	tksot	$\mathrm{RL}=1 \mathrm{k} \Omega$, Note 2	VDD $=2.7$ to 5.5 V	0		250	ns
output delay time		$\mathrm{CL}=100 \mathrm{pF}$		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. RL and Cl respectively indicate the load resistance and load capacitance of the SO output line.

2-wire and 3-wire serial I/O modes ($\overline{\mathrm{SCK}} \ldots$ external clock input): ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy2	$V_{\text {DD }}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high-, low-level width	tкட2 tкH2	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				1600			ns
SI ${ }^{\text {Note } 1}$ setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik2	$V_{\text {DD }}=2.7$ to 5.5 V		100			ns
				150			ns
SINote 1 hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tks12	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				600			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SONote 1 output delay time	tksoz	$R \mathrm{~L}=1 \mathrm{k} \Omega$, Note 2	VDD $=2.7$ to 5.5 V	0		300	ns
		$\mathrm{CL}=100 \mathrm{pF}$		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

SBI mode ($\overline{\mathrm{SCK}} \ldots$ internal clock output (master)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксүз	$V_{D D}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high-, low-level width	tкı3 tкн3			tkcy/2-50			ns
		$V_{D D}=2.7 \text { to } 5.5 \mathrm{~V}$		tкcy/3-150			ns
SB0, 1 setup time (to SCK \uparrow)	tsıк3	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		150			ns
				500			ns
SB0, 1 hold time (from $\overline{\text { SCK } \uparrow \text {) }}$	tks ${ }^{3}$			tксүз/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SBO, 1 output	tkso3	$\mathrm{RL}=1 \mathrm{k} \Omega$, Note	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		250	ns
delay time		$\mathrm{CL}=100 \mathrm{pF}$		0		1000	ns
$\overline{\text { SCK }} \uparrow \rightarrow$ SB0, $1 \downarrow$	tksb			tксуз			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tксуз			ns
SB0, 1 low-level width	tsbl			tксуз			ns
SB0, 1 high-level width	tssh			tксуз			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

SBI mode ($\overline{\text { SCK }} \cdots$ external clock input (slave)): $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy4	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high-, low-level width	$\begin{aligned} & \text { tkL4 } \\ & \text { tKH4 } \end{aligned}$	$V_{D D}=2.7 \text { to } 5.5 \mathrm{~V}$		400			ns
				1600			ns
SBO, 1 setup time (to SCK \uparrow)	tsik4	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		100			ns
				150			ns
SB0, 1 hold time (from $\overline{\text { SCK }} \uparrow$)	tks 14			tксү4/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SBO, 1 output	tkso4	$R \mathrm{~L}=1 \mathrm{k} \Omega \text {, }$	$V_{D D}=2.7$ to 5.5 V	0		300	ns
delay time		$C \mathrm{~L}=100 \mathrm{pF}$		0		1000	ns
$\overline{\mathrm{SCK}} \uparrow \rightarrow$ SB0, $1 \downarrow$	tksb			tксу4			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tkcy4			ns
SB0, 1 low-level width	tsbl			tkcy4			ns
SB0, 1 high-level width	tsbH			tkcy4			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

AC timing test points (except X1 and XT1 inputs)

Clock timing

TIO, TI1, TI2 timing

TIO, TI1, TI2

Serial transfer timing

3-wire serial I/O mode

2-wire serial I/O mode

Serial transfer timing

Bus release signal transfer

Command signal transfer

Interrupt input timing

$\overline{\text { RESET }}$ input timing

Data retention characteristics of data memory in STOP mode and at low supply voltage
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Voddr		1.8		5.5	V
Release signal setup time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time ${ }^{\text {Note } 1}$	twalt	Released by $\overline{\text { RESET }}$		Note 2		ms
		Released by interrupt request		Note 3		ms

Notes 1. The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
2. Either $2^{17} / \mathrm{fx}$ or $2^{15} / \mathrm{fx}$ can be selected by mask option.
3. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

BTM3	BTM2	BTM1	BTM0	Wait Time	
				$\mathrm{fx}=4.19 \mathrm{MHz}$	$\mathrm{fx}=6.0 \mathrm{MHz}$
-	0	0	0	$2^{20 / f x}$ (approx. 250 ms)	$2^{20 / f x}$ (approx. 175 ms)
-	0	1	1	$2^{17} / \mathrm{fx}$ (approx. 31.3 ms)	$2^{17} / \mathrm{fx}$ (approx. 21.8 ms)
-	1	0	1	$2^{15} / \mathrm{fx}$ (approx. 7.81 ms)	$2^{15} / \mathrm{fx}$ (approx. 5.46 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (approx. 1.95 ms)	$2^{13} / \mathrm{fx}$ (approx. 1.37 ms)

Data retention timing (when STOP mode released by $\overline{\text { RESET }}$

Data retention timing (standby release signal: when STOP mode released by interrupt signal)

* 13. CHARACTERISTICS CURVES (REFERENCE VALUES)

14. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.2 ± 0.4
B	14.0 ± 0.2
C	14.0 ± 0.2
D	17.2 ± 0.4
F	0.825
G	0.825
H	0.30 ± 0.10
I	0.13
J	0.65 (T.P.)
K	1.6 ± 0.2
L	0.8 ± 0.2
M	$0.15_{-0}^{+0.05}$
N	0.10
P	2.7 ± 0.1
Q	0.1 ± 0.1
R	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.
	S80GC-65-3B9-6

* 80-PIN PLASTIC QFP (14x14)

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.20 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	17.20 ± 0.20
F	0.825
G	0.825
H	0.32 ± 0.06
I	0.13
J	$0.65($ T.P. $)$
K	1.60 ± 0.20
L	0.80 ± 0.20
M	$0.17_{-0}^{+0.03}$
N	0.10
P	1.40 ± 0.10
Q	0.125 ± 0.075
R	$3^{\circ+7^{\circ}}$
S	1.70 MAX.
	P80GC-65-8BT-1

80 PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.00 ± 0.20
B	12.00 ± 0.20
C	12.00 ± 0.20
D	14.00 ± 0.20
F	1.25
G	1.25
H	$0.22_{-0}^{+0.05}$
I	0.10
J	$0.50($ T.P. $)$
K	1.00 ± 0.20
L	0.50 ± 0.20
M	$0.145_{-0}^{+0.055}$
N	0.10
P	1.05 ± 0.07
Q	0.10 ± 0.05
R	$5^{\circ} \pm 5^{\circ}$
S	1.27 MAX.
	P80GK-50-BE9-6

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.0 ± 0.2
B	12.0 ± 0.2
C	12.0 ± 0.2
D	14.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.08
J	0.5 (T.P.)
K	1.0 ± 0.2
L	0.5
M	0.145 ± 0.05
N	0.08
P	1.0
Q	0.1 ± 0.05
R	$3^{\circ}+3^{\circ}{ }^{\circ}$
S	1.1 ± 0.1
T	0.25
U	0.6 ± 0.15
	P80GK-50-9EU-1

15. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD753017A under the following recommended conditions.
For the details on the recommended soldering conditions, refer to Information Document Semiconductor Device Mounting Technology Manual (C10535E).

For the soldering methods and conditions other than those recommended, consult NEC.

Table 15-1. Soldering Conditions of Surface Mount Type (1/2)
(1) μ PD753012AGC-XXX-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$, resin thickness 2.7 mm) μ PD753016AGC-XXX-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$, resin thickness 2.7 mm) μ PD753017AGC-XXX-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$, resin thickness 2.7 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max.	VP15-00-3
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Time: 10 seconds or below, Number of flow processes: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ or below (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	-

(2) μ PD753012AGC-XXX-8BT: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$, resin thickness 1.4 mm) μ PD753016AGC-XXX-8BT: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$, resin thickness 1.4 mm) μ PD753017AGC-XXX-8BT: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$, resin thickness 1.4 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 2 max.	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 2 max.	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Time: 10 seconds or below, Number of flow processes: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ or below (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	-

[^0]Table 15-1. Soldering Conditions of Surface Mount Type (2/2)
(3) μ PD753012AGK-XXX-BE9: 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm) μ PD753016AGK-XXX-BE9: 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm) μ PD753017AGK-XXX-BE9: 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max., Exposure limit: 7 days $^{\text {Note }}$ (After that, prebaking is necessary at $125^{\circ} \mathrm{C}$ for 10 hours.)	IR35-107-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max., Exposure limit: 7 days $^{\text {Note (After that, prebaking is necessary at } 125^{\circ} \mathrm{C} \text { for } 10 \text { hours.) }}$	VP15-107-3
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	-

Note The number of days for storage after the dry pack has been opened. The storage conditions are $25^{\circ} \mathrm{C}, 65 \%$ RH max.
$\star \quad$ (4) μ PD753012AGK-XXX-9EU: 80-pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm}$, resin thickness 1.00 mm$)$ μ PD753016AGK-XXX-9EU: 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.00 mm) μ PD753017AGK-XXX-9EU: 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.00 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 2 max., Exposure limit: 7 days $^{\text {Note (After that, prebaking is necessary at } 125^{\circ} \mathrm{C} \text { for } 10 \text { hours.) }}$	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below $\left(200^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 2 max., Exposure limit: 7 days Note (After that, prebaking is necessary at $125^{\circ} \mathrm{C}$ for 10 hours.)	VP15-107-2
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	-

Note The number of days for storage after the dry pack has been opened. The storage conditions are $25^{\circ} \mathrm{C}, 65 \%$ RH max.

Caution Do not use two or more soldering methods in combination (except the partial heating method).

APPENDIX A. μ PD75316B, 753017A AND 75P3018A FUNCTION LIST

Parameter		$\mu \mathrm{PD} 75316 \mathrm{~B}$	$\mu \mathrm{PD} 753017 \mathrm{~A}$	μ PD75P3018A
Program memory		$\begin{gathered} \text { Mask ROM } \\ 0000 \mathrm{H}-3 \mathrm{~F} 7 \mathrm{FH} \\ (16256 \times 8 \text { bits }) \end{gathered}$	Mask ROM 0000H-5FFFH (24576 $\times 8$ bits)	One-time PROM 0000H-7FFFH (32768 $\times 8$ bits)
Data memory		$\begin{gathered} 000 \mathrm{H}-3 \mathrm{FFH} \\ (1024 \times 4 \text { bits }) \end{gathered}$		
CPU		75X Standard	75XL CPU	
Instruction execution time	When main system clock is selected	$0.95,1.91,15.3 \mu \mathrm{~s}$ (at 4.19 MHz operation)	- $0.95,1.91,3.81,15.3 \mu$ s (at 4.19 MHz operation) - $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (at 6.0 MHz operation)	
	When subsystem clock is selected	$122 \mu \mathrm{~s}$ (32.768 kHz operation)		
Pin connection	44	P12/INT2	P12/INT2/TI1/TI2	
	47	P21	P21/PTO1	
	48	P22/PCL	P22/PCL/PTO2	
	50-53	P30-P33		P30/MD0-P33/MD3
	57	IC		Vpp
Stack	SBS register	None	SBS. 3 = 1: Mk I mode selection SBS. $3=0$: Mk II mode selection	
	Stack area	000H-0FFH	n00H-nFFH ($\mathrm{n}=0-3$)	
	Subroutine call instruction stack operation	2-byte stack	Mk I mode: 2-byte stack Mk II mode: 3-byte stack	
Instruction	BRA !addr1 CALLA !addr1	Unavailable	Mk I mode: unavailable Mk II mode: available	
	MOVT XA, @BCDE MOVT XA, @BCXA BR BCDE BR BCXA		Available	
	CALL !addr	3 machine cycles	Mk I mode: 3 machine cycles, Mk II mode: 4 machine cycles	
	CALLF !faddr	2 machine cycles	Mk I mode: 2 machine cycles, Mk II mode: 3 machine cycles	
Timer		3 channels - Basic interval timer: 1 channel - 8-bit timer/event counter: 1 channel - Watch timer: 1 channel	5 channels - Basic interval timer/watchdog timer: 1 channel - 8-bit timer/event counter: 3 channels (can be used as 16-bit timer/event counter, carrier generator, timer with gate) - Watch timer: 1 channel	

	Parameter	μ PD75316B	μ PD753017A	μ PD75
Clock output (PCL)		$\Phi, 524,262,65.5 \mathrm{kHz}$ (Main system clock: at 4.19 MHz operation)	- Ф, 524, 262, 65.5 kH (Main system clock: - Ф, 750, 375, 93.8 kH (Main system clock:	ation) ation)
BUZ output		2 kHz (Main system clock: at 4.19 MHz operation)	- 2, 4, 32 kHz (Main system clock: subsystem clock: - 2.93, 5.86, 46.9 kHz (Main system clock:	ration or ation) ation)
Serial interface		3 modes are available - 3-wire serial I/O mode ... MSB/LSB can be selected for transfer first bit - 2-wire serial I/O mode - SBI mode		
sos register	Feedback resistor cut flag (SOS.0)	None	Provided	
	Sub-oscillator current cut flag (SOS.1)	None	Provided	
Register bank selection register (RBS)		None	Yes	
Standby release by INT0		Unavailable	Available	
Interrupt priority selection register (IPS)		None	Yes	
Vectored interrupt		External: 3, internal: 3	External: 3, internal:	
Supply voltage		$V_{\text {DD }}=2.0$ to 6.0 V	$V_{D D}=1.8$ to 5.5 V	
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		
Package		- 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$) - 80-pin plastic QFP $(14 \times 14 \mathrm{~mm})$		

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD753017A. The 75XL series uses a common relocatable assembler, in combination with a device file matching each machine.

Language processor

RA75X relocatable assembler	Host Machine			Part Number (product name)
		OS	Supply media	
	PC-9800 series	MS-DOS ${ }^{\text {M }}$	3.5-inch 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$		
	IBM PC/AT ${ }^{T M}$ and compatible machines	Refer to OS for IBM PC	3.5-inch 2 HC	μ S7B13RA75X

Device file	Host Machine			Part Number (product name)
		OS	Supply media	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13DF753017
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$		
	IBM PC/AT and compatible machines	Refer to OS for IBM PC	3.5-inch 2 HC	μ S7B13DF753017

Note Ver. 5.00 or later is provided with a task swap function, but it does not work with this software.

Remark The operation of the assembler and device file is guaranteed only on the above host machines and OSs.

PROM write tools

Hardware	PG-1500	PG-1500 is a PROM programmer which enables you to program single-chip microcontroller containing PROM by stand-alone or host machine operation by connecting an attached board and optional programmer adapter to PG-1500. It also enables you to program typical PROM devices of 256 K bits to 4 M bits.			
	PA-75P316BGC	PROM programmer adapter common to μ PD75P3018GC-3B9. Connect the programmer adapter to PG-1500 for use.			
	PA-75P316BGK	PROM programmer adapter common to μ PD75P3018GK-BE9. Connect the programmer adapter to PG-1500 for use.			
	PA-75P3018AGC-8BT	PROM programmer adapter common to μ PD75P3018AGC-8BT. Connect the programmer adapter to PG-1500 for use.			
	PA-75P3018AGK-9EU	PROM programmer adapter common to μ PD75P3018AGK-9EU. Connect the programmer adapter to PG-1500 for use.			
Software	PG-1500 controller	PG-1500 and a host machine are connected by serial and parallel interfaces and PG-1500 is controlled on the host machine.			
		Host machine	OS	Supply media	Part number (product name)
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}} \end{gathered}$	3.5 -inch 2HD	μ S5A13PG1500
		IBM PC/AT and compatible machines	Refer to OS for IBM PC	3.5-inch 2HD	μ S7B13PG1500

Note Ver. 5.00 or later is provided with a task swap function, but it does not work with this software.

Remark The operation of the PG-1500 controller is guaranteed only on the above host machines and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD753017A.

The system configurations are described as follows.

Hardware	IE-75000-R ${ }^{\text {Note } 1}$	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75 X series and 75 XL series. When developing a μ PD753017 subseries, the emulation board IE-75300-R-EM and emulation probe that are sold separately must be used with the IE-75000-R. By connecting with the host machine and the PROM programmer, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.			
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μ PD753017 subseries, the emulation board IE-75300-R-EM and emulation probe which are sold separately must be used with the IE-75001-R. It can debug the system efficiently by connecting the host machine and PROM programmer.			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use the μ PD753017 subseries. It must be used with the IE-75000-R or IE-75001-R.			
	EP-753017GC-R EV-9200GC-80	Emulation probe for the μ PD753017AGC. It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the 80 -pin conversion socket EV-9200GC-80 which facilitates connection to a target system.			
	EP-753017GK-R TGK-080SDW ${ }^{\text {Note } 2}$	Emulation probe for the μ PD753017AGK. It must be connected to the IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the 80 -pin conversion adapter TGK-080SDW which facilitates connection to a target system.			
Software	IE control program	Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix I/F and controls the IE-75000-R or IE-75001-R on a host machine.			
		Host machine	OS	Supply media	Part number (product name)
		PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13IE75X
			$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note } 3}}$	5-inch 2HD	μ S5A10IE75X
		IBM PC/AT and compatible machines	Refer to OS for IBM PC	3.5-inch 2HC	μ S7B13IE75X
				5-inch 2 HC	μ S7B10IE75X

Notes 1. Maintenance parts
2. This is a product of TOKYO ELETECH CORPORATION.

For further information, contact: Daimaru Kogyo, Ltd.
Tokyo Electronics Department (TEL +81-3-3820-7112)
Osaka Electronics 2nd Department (TEL +81-6-6244-6672)
3. Ver.5.00 or later is provided with a task swap function, but it dose not work with this software.

Remarks 1. The operation of the IE control program is guaranteed only on the above host machines and OSs.
2. The μ PD753012, 753016, 753017, 75P3018, 753012A, 753016A, 753017A, and 75P3018A are commonly referred to as the μ PD753017 subseries.

NEC

OS for IBM PC

The following IBM PC OS's are supported.

OS	Version
PC DOS ${ }^{\text {TM }}$	Ver. 5.02 to Ver. 6.3 J6.1/V ${ }^{\text {Note }}$ to $\mathrm{J} 6.3 / V^{\text {Note }}$
MS-DOS	Ver. 5.0 to Ver. 6.22 5.0/V $V^{\text {Note }}$ to $6.2 / V^{\text {Note }}$
IBM DOS ${ }^{\text {TM }}$	J5.02/V ${ }^{\text {Note }}$

Note Only English version is supported.

Caution Ver. 5.0 or later is provided with a task swap function, but it does not work with this software.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Related Documents

Document Name	Document No.	
	Japanese	English
μ PD753012A, 753016A, 753017A Data Sheet	U11662J	U11662E (this document)
μ PD75P3018A Data Sheet	U11917J	U11917E
μ PDD753017 User's Manual	U11282J	U11282E
μ PD753017 Instruction Table	IEM-5598	-
$75 X L$ Series Selection Guide	U10453J	U10453E

Development Tool Related Documents

Document Name			Document No.	
			Japanese	English
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	EEU-1493
	EP-753017GC/GK-R User's Manual		EEU-967	EEU-1495
	PG-1500 User's Manual		U11940J	U11940E
Software	RA75X Assembler Package User's Manual	Operation	U12622J	U12622E
		Language	U12385J	U12385E
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) Base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) Base	EEU-5008	U10540E

Other Related Documents

Document Name	Document No.	
	Japanese	English
SEMICONDUCTOR SELECTION GUIDE Products \& Package (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Microcontroller-Related Products by Third Parties	U11416J	-

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States

 and/or other countries.IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of April, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: Caution Do not use two or more soldering methods in combination (except the partial heating method).

