3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM

Features

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- 4K/8K/16K/32K x 8 organizations (CY7C0138V/144V/ 006V/007V)
- 4K/8K/16K/32K x 9 organizations (CY7C0139V/145V/ 016V/017V)
- 0.35-micron CMOS for optimum speed/power
- High-speed access: $15^{[1]} / 20 / 25 \mathrm{~ns}$
- Low operating power
- Active: $\mathrm{I}_{\mathrm{CC}}=115 \mathrm{~mA}$ (typical)
-Standby: $I_{\text {SB3 }}=10 \mu \mathrm{~A}$ (typical)
- Fully asynchronous operation
- Automatic power-down
- Expandable data bus to $\mathbf{1 6} / \mathbf{1 8}$ bits or more using Master/ Slave chip select when using more than one device
- On-chip arbitration logic
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Pin select for Master or Slave
- Commercial and Industrial Temperature Ranges
- Available in 68-pin PLCC (all), 64-pin TQFP (7C006V \& 7C144V)
- Pin-compatible and functionally equivalent to IDT70V05, 70V06, and 70V07.

Logic Block Diagram

[^0]
Functional Description

The CY7C138V/144V/006V/007V and CY7C139V/145V/ $016 \mathrm{~V} / 017 \mathrm{~V}$ are low-power CMOS $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}$, and $32 \mathrm{~K} \times 8 / 9$ dual-port static RAMs. Various arbitration schemes are included on the devices to handle situations when multiple processors access the same piece of data. Two ports are provided, permitting independent, asynchronous access for reads and writes to any location in memory. The devices can be utilized as standalone $8 / 9$-bit dual-port static RAMs or multiple devices can be combined in order to function as a 16/18-bit or wider master/slave dual-port static RAM. An M/S pin is provided for implementing 16/18-bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multi-
processor designs, communications status buffering, and dual-port video/graphics memory.
Each port has independent control pins: Chip Enable ($\overline{\mathrm{CE}}$), Read or Write Enable (R/W), and Output Enable ($\overline{\mathrm{OE}) \text {). Two }}$ flags are provided on each port ($\overline{\mathrm{BUSY}}$ and $\overline{\mathrm{INT}}$). $\overline{\mathrm{BUSY}}$ signals that the port is trying to access the same location currently being accessed by the other port. The Interrupt flag (INT) permits communication between ports or systems by means of a mail box. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a chip select ($\overline{\mathrm{CE}})$ pin.

Pin Configurations

[^1]Pin Configurations (continued)

Notes:

7. $I / \mathrm{O}_{8 \mathrm{R}}$ on the CY7C145V.
8. $1 / O_{8 L}$ on the CY7C145V.

Pin Configurations (continued)

Notes:
9. I/O for CY7C016V and CY7C017V only.
10. Address line for CY7C007V and CY7C01V7 only.

Pin Configurations (continued)

Selection Guide

	CY7C138V/144V/006V/007V CY7C139V/145V/016V/017V $\mathbf{- 1 5}^{11]}$	CY7C138V/144V/006V/007V CY7C139V/145V/016V/017V $\mathbf{- 2 0}$	CY7C138V/144V/006V/007V CY7C139V/145V/016V/017V -25
Maximum Access Time (ns)	15	20	25
Typical Operating Current (mA)	125	120	115
Typical Standby Current for $I_{S B}$ $(\mathrm{~mA})($ Both Ports TTL level)	35	35	30
Typical Standby Current for $I_{S B 3}$ $(\mu \mathrm{~A})$	$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$

Shaded areas contain advance information.

Pin Definitions

Left Port	Right Port	Description
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
$\mathrm{A}_{0 \mathrm{~L}}-\mathrm{A}_{14 \mathrm{~L}}$	$\mathrm{A}_{0 \mathrm{R}}-\mathrm{A}_{14 \mathrm{R}}$	Address ($\mathrm{A}_{0}-\mathrm{A}_{11}$ for 4 K devices; $\mathrm{A}_{0}-\mathrm{A}_{12}$ for 8 K devices; $\mathrm{A}_{0}-\mathrm{A}_{13}$ for 16 K devices; $\mathrm{A}_{0}-\mathrm{A}_{14}$ for 32 K)
$\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}}-\mathrm{l} / \mathrm{O}_{8 \mathrm{~L}}$	$1 / \mathrm{O}_{0 \mathrm{R}}-\mathrm{l} / \mathrm{O}_{8 \mathrm{R}}$	Data Bus Input/Output (I/ $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ for x 8 devices and $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{8}$ for x 9)
$\overline{\text { SEM }}_{\text {L }}$	$\overline{\mathrm{SEM}}_{\mathrm{R}}$	Semaphore Enable
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	Interrupt Flag
$\overline{\text { BUSY }}_{\text {L }}$	$\overline{\text { BUSY }}_{\text {R }}$	Busy Flag
M/ ${ }^{\text {S }}$		Master or Slave Select
V_{CC}		Power
GND		Ground
NC		No Connect

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential \qquad -0.5 V to +4.6 V

DC Voltage Applied to
Outputs in High Z State \qquad
DC Input Voltage ${ }^{[11]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage >2001V
Latch-Up Current... > 200 mA
Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$

Shaded areas contain advance information.

Note:

11. Pulse width $<20 \mathrm{~ns}$.

Electrical Characteristics Over the Operating Range

Parameter	Description		CY7C138V/144V/006V/007V									
			-15 ${ }^{[1]}$			-20			-25			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
V_{OH}	Output HIGH Voltage ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)		2.4			2.4			2.4			V
V_{OL}	Output LOW Voltage				0.4			0.4			0.4	V
V_{IH}	Input HIGH Voltage		2.0			2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8			0.8			0.8	V
l OZ	Output Leakage Current		-10		10	-10		10	-10		10	$\mu \mathrm{A}$
I_{CC}	Operating Current ($\mathrm{V}_{\mathrm{CC}}=$ Max., IOUT $=0 \mathrm{~mA}$) Outputs Disabled	Com'l.		125	185		120	175		115	165	mA
		Indust.					140	195		135	185	mA
$\mathrm{I}_{\text {SB1 }}$	Standby Current (Both Ports TTL Level) $\overline{\mathrm{CE}}_{\mathrm{L}} \& \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$	Com'l.		35	50		35	45		30	40	mA
		Indust.					45	55		40	50	mA
$\mathrm{I}_{\text {SB2 }}$	Standby Current (One Port TTL Level) $\overline{\mathrm{CE}}_{\mathrm{L}} \mid \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$	Com'l.		80	120		75	110		65	95	mA
		Indust.					85	130		75	105	mA
$\mathrm{I}_{\text {SB3 }}$	Standby Current (Both Ports CMOS Level) $\overline{\mathrm{CE}}_{\mathrm{L}} \& \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$, $\mathrm{f}=0$	Com'l.		10	500		10	500		10	500	$\mu \mathrm{A}$
		Indust.					10	500		10	500	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB4 }}$	Standby Current (One Port CMOS Level) $\overline{C E}_{\mathrm{L}} \mid \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[12]}$	Com'l.		75	105		70	95		60	80	mA
		Indust.					80	105		70	90	mA

Shaded areas contain advance information.
Capacitance ${ }^{[13]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(b) ThéveninEquivalent (Load 1)

(c) Three-State Delay (Load 2) (Used for $t_{L Z}, t_{H Z}, t_{H Z W E}$ \& $t_{L Z W E}$ including scope and jig)

ALL INPUTPULSES

[^2]Switching Characteristics Over the Operating Range ${ }^{[14]}$

Parameter	Description	CY7C138V/144V/006V/007VCY7C139V/145V/016V/017V						Unit
		$-15^{[1]}$		-20		-25		
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15		20		25		ns
t_{AA}	Address to Data Valid		15		20		25	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold From Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}{ }^{[15]}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\text { OE LOW to Data Valid }}$		10		12		13	ns
$\mathrm{t}_{\text {LZOE }}{ }^{[16,17,18]}$	$\overline{\mathrm{OE}}$ Low to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZOE }}{ }^{[16,17,18]}$	$\overline{\text { OE HIGH to High Z }}$		10		12		15	ns
$\mathrm{t}_{\text {LZCE }}{ }^{[16,17,18]}$	$\overline{\mathrm{CE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZCE }}{ }^{[16,17,18]}$	$\overline{\text { CE }}$ HIGH to High Z		10		12		15	ns
$\mathrm{t}_{\mathrm{Pu}}{ }^{[18]}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}{ }^{[18]}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		15		20		25	ns
$\mathrm{t}_{\mathrm{ABE}}{ }^{[15]}$	Byte Enable Access Time		15		20		25	ns
WRITE CYCLE								
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	15		20		25		ns
$\mathrm{t}_{\text {SCE }}{ }^{[15]}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		16		20		ns
$\mathrm{t}_{\text {AW }}$	Address Valid to Write End	12		16		20		ns
t_{HA}	Address Hold From Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{SA}}{ }^{[15]}$	Address Set-Up to Write Start	0		0		0		ns
$t_{\text {PWE }}$	Write Pulse Width	12		16		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		12		15		ns
t_{HD}	Data Hold From Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[17,18]}$	R/̄W LOW to High Z		10		12		15	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[17,18]}$	R/W HIGH to Low Z	3		3		3		ns
twDD $^{[19]}$	Write Pulse to Data Delay		30		40		50	ns
$\mathrm{t}_{\text {DDD }}{ }^{[19]}$	Write Data Valid to Read Data Valid		25		30		35	ns
BUSY TIMING ${ }^{[20]}$								
$\mathrm{t}_{\text {BLA }}$	$\overline{\text { BUSY LOW from Address Match }}$		15		20		20	ns
$\mathrm{t}_{\text {BHA }}$	$\overline{\text { BUSY }}$ HIGH from Address Mismatch		15		20		20	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY LOW from } \overline{\text { CE }} \text { LOW }}$		15		20		20	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\text { CE }}$ HIGH		15		16		17	ns
t_{PS}	Port Set-Up for Priority	5		5		5		ns
t_{WB}	R/W HIGH after $\overline{\text { BUSY }}$ (Slave)	0		0		0		ns
$\mathrm{t}_{\text {WH }}$	R/్̄W HIGH after BUSY HIGH (Slave)	13		15		17		ns

Note

14. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{O}} \mathrm{l}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
15. To access RAM, $\overline{C E}=L$, $\mathrm{SEM}=H$. To access semaphore, $\overline{\mathrm{CE}}=H$ and $\overline{\mathrm{SEM}}=\mathrm{L}$. Either condition must be valid for the entire $\mathrm{t}_{\mathrm{SCE}}$ time.
16. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$.
17. Test conditions used are Load 3.
18. This parameter is guaranteed but not tested.For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.
19. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.
20. Test conditions used are Load 2.

Switching Characteristics Over the Operating Range ${ }^{[14]}$ (continued)

Parameter	Description	CY7C138V/144V/006V/007V CY7C139V/145V/016V/017V						Unit
		$-15^{[1]}$		-20		-25		
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {BDD }}{ }^{[21]}$	$\overline{\text { BUSY HIGH to Data Valid }}$		15		20		25	ns
INTERRUPT TIMING ${ }^{[20]}$								
$\mathrm{t}_{\text {INS }}$	$\overline{\text { INT Set Time }}$		15		20		20	ns
$\mathrm{t}_{\text {INR }}$	INT Reset Time		15		20		20	ns
SEMAPHORE TIMING								
$\mathrm{t}_{\text {SOP }}$	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{SEM}})$	10		10		12		ns
$\mathrm{t}_{\text {SWRD }}$	SEM Flag Write to Read Time	5		5		5		ns
$t_{\text {SPS }}$	SEM Flag Contention Window	5		5		5		ns
$t_{\text {SAA }}$	SEM Address Access Time		15		20		25	ns

Data Retention Mode

The CY7C0138V/144V/006V/007V and CY7C139V/145V/ $016 \mathrm{~V} / 017 \mathrm{~V}$ are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

1. Chip enable (CE) must be held HIGH during data retention, within V_{CC} to $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$.
2. $\overline{\mathrm{CE}}$ must be kept between $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ and 70% of V_{CC} during the power-up and power-down transitions.
3. The RAM can begin operation $>t_{\mathrm{RC}}$ after V_{CC} reaches the minimum operating voltage (3.0 volts).

Timing

Parameter	Test Conditions ${ }^{[22]}$	Max.	Unit
$I^{[2} C_{D R 1}$	$@ V C C_{D R}=2 \mathrm{~V}$	50	$\mu \mathrm{~A}$

[^3]
Switching Waveforms

Read Cycle No. 1 (Either Port Address Access) ${ }^{[23,24,25]}$

Read Cycle No . 2 (Either Port CE/OE Access) ${ }^{[23,26,27]}$

Read Cycle No. 3 (Either Port) ${ }^{[23, ~ 25, ~ 26, ~ 27] ~}$

Notes:

23. R/W is HIGH for read cycles.
24. Device is continuously selected $\overline{C E}=\mathrm{V}_{\mathrm{IL}}$. This waveform cannot be used for semaphore reads.
25. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
26. Address valid prior to or coincident with CE transition LOW.
27. To access RAM, $\overline{C E}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{SEM}}=\mathrm{V}_{\mathrm{IH}}$. To access semaphore, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{SEM}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 1: R/ $\overline{\mathbf{W}}$ Controlled Timing ${ }^{[28, ~ 29, ~ 30, ~ 31] ~}$

Write Cycle No. 2: CE Controlled Timing ${ }^{[28, ~ 29, ~ 30, ~ 35] ~}$

Notes:

28. R/W must be HIGH during all address transitions.
29. A write occurs during the overlap ($t_{\text {SCE }}$ or tPWE) of a LOW $\overline{\mathrm{CE}}$ or $\overline{\mathrm{SEM}}$.
30. $t_{H A}$ is measured from the earlier of $\overline{C E}$ or $R \bar{W}$ or (SEM or $R \bar{W}$) going HIGH at the end of write cycle.
31. If OE is LOW during a $R \bar{W}$ controlled write cycle, the write pulse width must be the larger of $\mathrm{t}_{\text {PWE }}$ or ($\left.\mathrm{t}_{H Z W E}+\mathrm{t}_{S D}\right)$ to allow the $/ \mathrm{O}$ drivers to turn off and data to be placed on the bus for the required $\mathrm{t}_{\text {SD }}$. If $\overline{\mathrm{OE}}$ is HIGH during an $\mathrm{R} \bar{W}$ controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified $\mathrm{t}_{\text {PWE }}$.
32. To access RAM, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{SEM}}=\mathrm{V}_{\mathrm{IH}}$.
33. Transition is measured $\pm 500 \mathrm{mV}$ from steady state with a $5-\mathrm{pF}$ load (including scope and jig). This parameter is sampled and not 100% tested.
34. During this period, the I/O pins are in the output state, and input signals must not be applied.
35. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.

Switching Waveforms (continued)
Semaphore Read After Write Timing, Either Side ${ }^{[36]}$

Timing Diagram of Semaphore Contention ${ }^{[37, ~ 38,39]}$

Notes:
36. $\overline{\mathrm{CE}}=\mathrm{HIGH}$ for the duration of the above timing (both write and read cycle).
37. $I / O_{O R}=I / O_{O L}=L O W$ (request semaphore); $\mathrm{CE}_{\mathrm{R}}=\mathrm{CE}_{\mathrm{L}}=\mathrm{HIGH}$.
38. Semaphores are reset (available to both ports) at cycle start.
39. If $t_{\text {SPS }}$ is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.

Switching Waveforms (continued)

Timing Diagram of Read with $\overline{\operatorname{BUSY}}(\mathrm{M} / \overline{\mathrm{S}}=\mathrm{HIGH}){ }^{[40]}$

Write Timing with Busy Input (M/S=LOW)

Note:
40. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{LOW}$.

Switching Waveforms (continued)
Busy Timing Diagram No. 1 ($\overline{\text { CE Arbitration) })^{[41]}}$
$\overline{C E}_{\mathrm{L}}$ Valid First:

CE_{R} Valid First:

Busy Timing Diagram No. 2 (Address Arbitration) ${ }^{[41]}$
Left Address Valid First

Right Address Valid First:

Note:
41. If $t_{P S}$ is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side $\overline{B U S Y}$ will be asserted.

Switching Waveforms (continued)

Right Side Sets $\overline{\mathrm{INT}}_{\mathrm{L}}$:

Notes:

42. $t_{H A}$ depends on which enable pin $\left(\overline{C E}_{L}\right.$ or $\left.R \bar{W}_{L}\right)$ is deasserted first.
43. $\mathrm{t}_{\mathrm{INS}}$ or $\mathrm{t}_{\mathrm{INR}}$ depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} \overline{\mathrm{W}}_{\mathrm{L}}\right)$ is asserted last.

Architecture

The CY7C138V/144V/006V/007V and CY7C139V/145V/ $016 \mathrm{~V} / 017 \mathrm{~V}$ consist of an array of $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}$, and 32 K words of 8 and 9 bits each of dual-port RAM cells, I/O and address lines, and control signals ($\overline{C E}, \overline{O E}, R / \bar{W}$). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes/reads to the same location, a BUSY pin is provided on each port. Two Interrupt (INT) pins can be utilized for port-to-port communication. Two Semaphore ($\overline{\mathrm{SEM}}$) control pins are used for allocating shared resources. With the M/S pin, the devices can function as a master (BUSY pins are outputs) or as a slave (BUSY pins are inputs). The devices also have an automatic power-down feature controlled by $\overline{\mathrm{CE}}$. Each port is provided with its own output enable control ($\overline{\mathrm{OE}})$, which allows data to be read from the device.

Functional Description

Write Operation

Data must be set up for a duration of $t_{S D}$ before the rising edge of $R \bar{W}$ in order to guarantee a valid write. A write operation is controlled by either the R \bar{W} pin (see Write Cycle No. 1 waveform) or the $\overline{C E}$ pin (see Write Cycle No. 2 waveform). Required inputs for noncontention operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must occur before the data is read on the output; otherwise the data read is not deterministic. Data will be valid on the port $t_{D D D}$ after the data is presented on the other port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available $\mathrm{t}_{\mathrm{ACE}}$ after $\overline{\mathrm{CE}}$ or $\mathrm{t}_{\mathrm{DOE}}$ after $\overline{\mathrm{OE}}$ is asserted. If the user wishes to access a semaphore flag, then the $\overline{\mathrm{SEM}}$ pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin, and $\overline{\mathrm{OE}}$ must also be asserted.

Interrupts

The upper two memory locations may be used for message passing. The highest memory location (FFF for the CY7C138V/9V, 1FFF for the CY7C144V/5V, 3FFF for the CY7C006V/16V, 7FFF for the CY7C007V/17V) is the mailbox for the right port and the second-highest memory location (FFE for the CY7C138V/9V, 1FFE for the CY7C144V/5V, 3FFE for the CY7C006V/16V, 7FFE for the CY7C007V/17V) is the mailbox for the left port. When one port writes to the other port's mailbox, an interrupt is generated to the owner. The interrupt is reset when the owner reads the contents of the mailbox. The message is user-defined.
Each port can read the other port's mailbox without resetting the interrupt. The active state of the busy signal (to a port) prevents the port from setting the interrupt to the winning port. Also, an active busy to a port prevents that port from reading its own mailbox and, thus, resetting the interrupt to it. If an application does not require message passing, do not connect the interrupt pin to the processor's interrupt request input pin. The operation of the interrupts and their interaction with Busy are summarized in Table 2.

Busy

The CY7C138V/144V/006V/007V and CY7139V/145V/016V/017V provide on-chip arbitration to resolve simultaneous memory location
access (contention). If both ports' $\overline{\mathrm{CE}}$ s are asserted and an address match occurs within $t_{P S}$ of each other, the busy logic will determine which port has access. If tps is violated, one port will definitely gain permission to the location, but it is not predictable which port will get that permission. BUSY will be asserted tBLA after an address match or $\mathrm{t}_{\mathrm{BLC}}$ after $\overline{\mathrm{CE}}$ is taken LOW.

Master/Slave

An M/ \bar{S} pin is provided in order to expand the word width by configuring the device as either a master or a slave. The BUSY output of the master is connected to the BUSY input of the slave. This will allow the device to interface to a master device with no external components. Writing to slave devices must be delayed until after the BUSY input has settled ($\mathrm{t}_{\mathrm{BLC}}$ or $\mathrm{t}_{\mathrm{BLA}}$), otherwise, the slave chip may begin a write cycle during a contention situation. When tied HIGH, the M//्S pin allows the device to be used as a master and, therefore, the BUSY line is an output. $\overline{\mathrm{BUSY}}$ can then be used to send the arbitration outcome to a slave.

Semaphore Operation

The CY7C138V/144V/006V/007V and CY7C139V/145V/ 016V/017V provide eight semaphore latches, which are separate from the dual-port memory locations. Semaphores are used to reserve resources that are shared between the two ports. The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, SEM or $\overline{\mathrm{OE}}$ must be deasserted for tsop before attempting to read the semaphore. The semaphore value will be available tswRD $+\mathrm{t}_{\text {DOE }}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control of the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side will succeed in gaining control of the semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.
Semaphores are accessed by asserting $\overline{\text { SEM }}$ LOW. The $\overline{\text { SEM }}$ pin functions as a chip select for the semaphore latches ($\overline{\mathrm{CE}}$ must remain HIGH during SEM LOW). A A_{0-2} represents the semaphore address. $\overline{O E}$ and $\mathrm{R} \bar{W}$ are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a zero is written to the left port of an available semaphore, a one will appear at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. Table 3 shows sample semaphore operations.
When reading a semaphore, all data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within tSPS 2 of each other, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.

Table 1. Non-Contending Read/Write

Inputs				Outputs	Operation
$\overline{\mathbf{C E}}$	R/产	$\overline{\text { OE }}$	$\overline{\text { SEM }}$	$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{8}$	
H	X	X	H	High Z	Deselected: Power-Down
H	H	L	L	Data Out	Read Data in Semaphore Flag
X	X	H	X	High Z	I/O Lines Disabled
H	-	X	L	Data In	Write into Semaphore Flag
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Not Allowed

Table 2. Interrupt Operation Example (assumes $\overline{\mathrm{BUSY}}_{\mathrm{L}}=\overline{\mathrm{BUSY}}_{\mathrm{R}}=\mathrm{HIGH}$)

| | Left Port | | | | | Right Port | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | $\mathbf{R} / \overline{\mathrm{W}}_{\mathrm{L}}$ | $\overline{\mathbf{C E}}_{\mathrm{L}}$ | $\overline{\mathbf{O E}}_{\mathrm{L}}$ | $\mathbf{A}_{\mathbf{0 L - 1 4 L}}$ | $\overline{\mathbf{N T}}_{\mathrm{L}}$ | $\mathbf{R} / \overline{\mathrm{W}}_{\mathbf{R}}$ | $\overline{\mathbf{C E}}_{\mathbf{R}}$ | $\overline{\mathbf{O E}}_{\mathbf{R}}$ | $\mathbf{A}_{\mathbf{0 R} \mathbf{- 1 4 R}}$ | $\overline{\mathbf{I N T}}_{\mathbf{R}}$ |
| Set Right $\overline{\mathrm{NT}}_{\mathrm{R}}$ Flag | L | L | X | $\mathrm{FFF}^{[46]}$ | X | X | X | X | X | $\mathrm{L}^{[45]}$ |
| Reset Right $\overline{\mathrm{NT}}_{\mathrm{R}}$ Flag | X | X | X | X | X | X | L | L | $\mathrm{FFF}^{[46]}$ | $\mathrm{H}^{[44]}$ |
| Set Left $\overline{\mathrm{NT}}_{\mathrm{L}}$ Flag | X | X | X | X | $\mathrm{L}^{[44]}$ | L | L | X | $1 \mathrm{FFE}^{[46]}$ | X |
| Reset Left $\overline{\mathrm{INT}}_{\mathrm{L}}$ Flag | X | L | L | 1FFE $^{[46]}$ | $\mathrm{H}^{[45]}$ | X | X | X | X | X |

Table 3. Semaphore Operation Example

Function	$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{8}$ Left	$\mathrm{I} / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{8}$ Right	Status
No action	1	1	Semaphore free
Left port writes 0 to semaphore	0	1	Left Port has semaphore token
Right port writes 0 to semaphore	0	1	No change. Right side has no write access to semaphore
Left port writes 1 to semaphore	1	0	Right port obtains semaphore token
Left port writes 0 to semaphore	1	0	No change. Left port has no write access to semaphore
Right port writes 1 to semaphore	0	1	Left port obtains semaphore token
Left port writes 1 to semaphore	1	1	Semaphore free
Right port writes 0 to semaphore	1	0	Right port has semaphore token
Right port writes 1 to semaphore	1	1	Semaphore free
Left port writes 0 to semaphore	0	1	Left port has semaphore token
Left port writes 1 to semaphore	1	1	Semaphore free
Note: 44. If $\overline{B U S Y}_{R}=L$, then no change. 45. If $\overline{B U S Y}_{L}=L$, then no change. 46. See Functional Description for speci	addresses by devi	part number.	

Ordering Information

Package Availability Guide

Device	Organization	68-Pin PLCC	64-Pin TQFP
CY7C138V	$4 \mathrm{~K} \times 8$	X	
CY7C139V	$4 \mathrm{~K} \times 9$	X	X
CY7C144V	$8 \mathrm{~K} \times 8$	X	X
CY7C145V	$8 \mathrm{~K} \times 9$	X	X
CY7C006V	$16 \mathrm{~K} \times 8$	X	
CY7C016V	$16 \mathrm{~K} \times 9$	X	
CY7C007V	$32 \mathrm{~K} \times 8$	$32 \mathrm{~K} \times 9$	
CY7C017V			

4K x8 3.3V Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
$15^{[1]}$	CY7C138V-15JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C138V-20JC	J 81	68 -Pin Plastic Leaded Chip Carrier	Commercial
	CY7C138V-20JI	J 81	68 -Pin Plastic Leaded Chip Carrier	Industrial
25	CY7C138V-25JC	J 81	68 -Pin Plastic Leaded Chip Carrier	Commercial
	CY7C138V-25JI	J 81	68 -Pin Plastic Leaded Chip Carrier	Industrial

Shaded areas contain advance information.

4K x9 3.3V Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
$15^{[1]}$	CY7C139V-15JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C139V-20JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C139V-20JI	J 81	68 -Pin Plastic Leaded Chip Carrier	Industrial
25	CY7C139V-25JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C139V-25JI	J81	68-Pin Plastic Leaded Chip Carrier	Industrial

Shaded areas contain advance information.

8K x8 3.3V Asynchronous Dual-Port SRAM

Speed ns)	Ordering Code	Package Name	Operating Range	
$15^{[1]}$	CY7C144V-15AC	A65	64-Pin Thin Quad Flat Pack	Commercial
	CY7C144V-15JC	J81	68-Pin Plastic Leaded Chip Carrier	
	CY7C144V-20AC	A65	64-Pin Thin Quad Flat Pack	Commercial
	CY7C144V-20JC	J81	68-Pin Plastic Leaded Chip Carrier	
	CY7C144V-20AI	A65	64-Pin Thin Quad Flat Pack	Industrial
	CY7C144V-20JI	J81	68-Pin Plastic Leaded Chip Carrier	
25	CY7C144V-25AC	A65	64-Pin Thin Quad Flat Pack	
	CY7C144V-25JC	J81	68-Pin Plastic Leaded Chip Carrier	Industrial
	CY7C144V-25AI	A65	64-Pin Thin Quad Flat Pack	
	CY7C144V-25JI	J81	68-Pin Plastic Leaded Chip Carrier	

[^4]Ordering Information
(continued)
8K x9 3.3V Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Operating Range	
$15^{[1]}$	CY7C145V-15JC	J81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C145V-20JC	J81	68 -Pin Plastic Leaded Chip Carrier	Commercial
	CY7C145V-20JI	J81	68 -Pin Plastic Leaded Chip Carrier	Industrial
25	CY7C145V-25JC	J 81	68 -Pin Plastic Leaded Chip Carrier	Commercial
	CY7C145V-25JI	J81	68-Pin Plastic Leaded Chip Carrier	Industrial

Shaded areas contain advance information.

16K x8 3.3V Asynchronous Dual-Port SRAM

$\begin{aligned} & \text { Speed } \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
$15^{[1]}$	CY7C006V-15AC	A65	64-Pin Thin Quad Flat Pack	Commercial
	CY7C006V-15JC	J81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C006V-20AC	A65	64-Pin Thin Quad Flat Pack	Commercial
	CY7C006V-20JC	J81	68-Pin Plastic Leaded Chip Carrier	
	CY7C006V-20AI	A65	64-Pin Thin Quad Flat Pack	Industrial
	CY7C006V-20JI	J81	68-Pin Plastic Leaded Chip Carrier	
25	CY7C006V-25AC	A65	64-Pin Thin Quad Flat Pack	Commercial
	CY7C006V-25JC	J81	68-Pin Plastic Leaded Chip Carrier	
	CY7C006V-25AI	A65	64-Pin Thin Quad Flat Pack	Industrial
	CY7C006V-25JI	J81	68-Pin Plastic Leaded Chip Carrier	

Shaded areas contain advance information.

16K x9 3.3V Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Operating Range	
$15^{[1]}$	CY7C016V-15JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C016V-20JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C016V-20JI	J 81	68 -Pin Plastic Leaded Chip Carrier	Industrial
25	CY7C016V-25JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C016V-25JI	J 81	68-Pin Plastic Leaded Chip Carrier	Industrial

Shaded areas contain advance information.

32K x8 3.3V Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15^{11}	CY7C007V-15JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C007V-20JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C007V-20JI	J 81	68-Pin Plastic Leaded Chip Carrier	Industrial
25	CY7C007V-25JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
	CY7C007V-25JI	J81	68-Pin Plastic Leaded Chip Carrier	Industrial

[^5]Ordering Information (continued)
32K x9 3.3V Asynchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
$15^{[1]}$	CY7C017V-15JC	J 81	68-Pin Plastic Leaded Chip Carrier	Commercial
20	CY7C017V-20JC	J 81	68 -Pin Plastic Leaded Chip Carrier	Commercial
	CY7C017V-20JI	J 81	68 -Pin Plastic Leaded Chip Carrier	Industrial
25	CY7C017V-25JC	J 81	68 -Pin Plastic Leaded Chip Carrier	Commercial
	CY7C017V-25JI	J81	68-Pin Plastic Leaded Chip Carrier	Industrial

Shaded areas contain advance information.
Document \#: 38-00677-B

Package Diagrams

64-Lead Thin Plastic Quad Flat Pack ($14 \times 14 \times 1.4 \mathrm{~mm}$) A65

DIMENSIDNS ARE IN MILLIMETERS

PRELIMINARY

Package Diagrams (continued)

68-Lead Plastic Leaded Chip Carrier J81

CY7C138V/144V/006V/007V
PRELIMINARY CY7C139V/145V/016V/017V

CY7C036 Dual Port Design Consideration Data Sheet Addendum

This design consideration applies to the Internal Power-OnReset (POR) circuit used on the CY7C036 and its derivatives listed below.
Power supply ramp-The devices will function properly and meet all data sheet specifications if the power supply ramp rate is greater than 100 ns . If ramp is less than 100 ns , you may see a non-destructive failure in which the device will not respond to changes in address or clock, but the I/Os will respond to the output enable.
Applications consideration-If the power supply ramps in less than 100 ns , a small resistor (20-50 $)$, a large capacitor, or an RC network can be connected at the output of the power supply to ground. The addition of a resistor will help clean up the power lines, while the capacitor will slow down the ramp rate without the loss of any power. Contact your local Cypress FAE for assistance as needed.
Troubleshooting-If a problem occurs with the part, power down the device to ground and then power up again at slower
ramp rate (greater than 100 ns) in order to confirm that the problem might be due to the POR circuit. If the dual-port functions properly once the ramp rate is slowed to 100 ns or greater, then the POR circuit is at fault.
Applicable devices-All speed/package/temperature combinations of the following:

- CY7C138V
- CY7C139V
- CY7C144V
- CY7C145V
- CY7C006V
- CY7C016V
- CY7C007V
- CY7C017V

Cypress design change-Cypress design team has identified the root cause. A permanent circuit change and die revision will be available beginning in October and will be identified by the letter " A " in the part number.

[^0]: Notes:

 1. Call for availability
 2. $I / O_{0}-I / O_{7}$ for $x 8$ devices; $I / O_{0}-I / O_{8}$ for $x 9$ devices.
 3. $A_{0}-A_{11}$ for 4 K devices; $A_{0}-A_{12}$ for 8 K devices; $A_{0}-A_{13}$ for 16 K devices; $A_{0}-A_{14}$ for 32 K devices.
 4. $\overline{\mathrm{BUSY}}$ is an output in master mode and an input in slave mode.
[^1]: Notes:
 5. $I / O_{8 R}$ on the CY7C139V.
 6. $\mathrm{I} / \mathrm{O}_{8 \mathrm{~L}}$ on the CY7C13V9.

[^2]: Notes:
 12. $f_{M A X}=1 / t_{R C}=A l l$ inputs cycling at $f=1 / t_{R C}$ (except output enable). $f=0$ means no address or control lines change. This applies only to inputs at CMOS level standby $I_{\text {SB3 }}$
 13. Tested initially and after any design or process changes that may affect these parameters.

[^3]: Notes:
 21. $t_{B D D}$ is a calculated parameter and is the greater of $t_{W D D}{ }^{-1} t_{P W E}$ (actual) or $t_{D D D}-t_{S D}$ (actual).
 22. $\mathrm{CE}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {in }}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. This parameter is guaranteed but not tested.

[^4]: Shaded areas contain advance information.

[^5]: Shaded areas contain advance information.

