MOS INTEGRATED CIRCUIT μ PD75312(A), 75316(A)

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD75316(A) is one of the 75X Series 4-bit single-chip microcomputer having a built-in LCD controller/ driver, and has a data processing capability comparable to that of an 8-bit microcomputer.

In addition to high-speed operation with 0.95μ s minimum instruction execution time for the CPU, the μ PD75316(A) can also process data in 1-, 4-, and 8 -bit units. Therefore, as a 4-bit single-chip microcomputer chip having a built-in LCD panel controller/driver, its data processing capability is the highest in its class in the world.

Detailed functions are described in the following user's manual. Be sure to read it for designing. بPD75308 User's Manual: IEM-5016

FEATURES

- Higher reliability than μ PD75316
- Internal memory
- Program memory (ROM)
: 16256×8 bits (μ PD75316(A))
: 12160×8 bits (μ PD75312(A))
- Data memory
: 512×4 bits
- Capable of high-speed operation and variable instruction execution time to power save
- $0.95 \mu \mathrm{~s}, 1.91 \mu \mathrm{~s}, 15.3 \mu \mathrm{~s}$ (operating at 4.19 MHz)
- $122 \mu \mathrm{~s}$ (operating at 32.768 kHz)
- 75X architecture comparable to that for an 8-bit microcomputer is employed
- Built-in programmable LCD controller/driver
- Clock operation at reduced power dissipation: $5 \mu \mathrm{~A}$ TYP. (operating at 3 V)
- Enhanced timer function (3 channels)
- Interrupt functions especially enhanced for applications, such as remote control receiver
- Pull-up resistors can be provided for 31 I/O lines
- Built-in NEC standard serial bus interface (SBI)
- Upgraded model of μ PD7514 (μ PD7500 Series)
- PROM version (μ PD75P316, μ PD75P316A) available

APPLICATIONS

Suitable for controlling automotive and transportation equipment.

The $\mu \mathrm{PD} 75316(\mathrm{~A})$ is treated as the representative model throughout this document, unless there are differences between μ PD75312(A) and μ PD75316(A) functions.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μ PD75312GF(A)-xxx-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Special
μ PD75316GF(A)-xxx-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Special

Remarks: xxx is ROM code number.

Please refer to "Quality Grade on NEC Semiconductor Devices" (Document Number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

DIFFERENCE BETWEEN μ PD75316(A) and μ PD75316

| Product | μ PD75316(A) | μ PD75316 |
| :--- | :--- | :--- | :---: |
| Quality Grade | Special | Standard |
| Directly Driving LED | Not offered | Offered |
| Electrical
 Characteristics | Absolute Maximum Ratings | Differ in high-level output currrent and low-level output
 current |
| | DC Characteristics | Differ in low-level output voltage |

FUNCTIONAL OUTLINE (1/2)

Item		Function				
Number of Basic Instructions		41				
Instruction Cycle		- $0.95 \mu \mathrm{~s}, 1.91 \mu \mathrm{~s}, 15.3 \mu \mathrm{~s}$ (Main system clock: operating at 4.19 MHz) - 122μ s (Subsystem clock: operating at 32.768 kHz)				
Internal Memory	ROM	16256×8-bit (μ PD75316(A)), 12160×8-bit (μ PD75312(A))				
	RAM	512×4 bits				
General-Purpose Registers		- 4-bit manipulation: 8 (B, C, D, E, H, L, X, A) - 8-bit manipulation: 4 (BC, DE, HL, XA)				
Accumulator		- Bit accumulator (CY) - 4-bit accumulator (A) - 8-bit accumulator (XA)				
Instruction Set		- Abundant bit manipulation instructions - Efficient 4-bit data manipulation instructions - 8-bit data transfer instructions - GETI instruction executing 2-/3-byte instruction with a single byte				
I/O Line		40	8	CMOS input pins	Pull-up by software is possible.$\text { : } 23$	
		16	CMOS input/output pins			
		8	CMOS output pins	Also serve as segment pins		
		8	N-ch open-drain input/output	Withstand voltage: 10 V Pull-up by mask option is possible. : 8		
LCD Controller/ Driver			- Segment number selection: 24/28/32 segments ($4 / 8$ pins can also be used as bit ports.) - Display mode selection: Static, $1 / 2$ duty, $1 / 3$ duty ($1 / 2$ bias), $1 / 3$ duty ($1 / 3$ bias), $1 / 4$ duty - Dividing resistor for LCD driving can be built-in by mask option.			
Supply Voltage Range			$V_{D D}=2.7$ to 6.0 V			
Timer			3 chs	- 8-bit timer/event counter - Clock source: 4 steps - Event count is possible		
		- 8-bit basic interval timer - Reference time generation: $1.95 \mathrm{~ms}, 7.82 \mathrm{~ms}, 31.3 \mathrm{~ms}, 250 \mathrm{~ms}$ (operating at 4.19 MHz) - Can be used as watchdog timer				
		- Watch timer - Generates 0.5 -second time intervals - Count clock source: Main system clock or subsystem clock (selectable) - Watch fast forward mode (generates $3.9-\mathrm{ms}$ time intervals) - Buzzer output (2 kHz)				

FUNCTIONAL OUTLINE (2/2)

Item	Function
8-bit Serial Interface	- Three modes: - 3-line serial I/O mode - 2-line serial I/O mode - SBI mode
	- LSB/MSB first selectable
Bit Sequential Buffer	Special bit manipulation memory: 16 bits - Ideal for remote controller
Clock Output Function	Timer/event counter output (PTO0): Output of square wave at specified frequency
	Clock output (PCL): $\Phi, 524,262,65.5 \mathrm{kHz}$ (operating at 4.19 MHz)
	Buzzer output (BUZ): 2 kHz (operating at 4.19 MHz or 32.768 kHz)
Vector Interrupt	- External: 3 - Internal: 3
Test Input	- External: 1 - Internal: 1
System Clock Oscillator Circuit	- Ceramic/crystal oscillator circuit for main system clock oscillation: 4.194304 MHz - Crystal oscillator circuit for subsystem clock oscillation: 32.768 kHz
Standby	STOP/HALT mode
Package	80-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)

CONTENTS

1. PIN CONFIGURATION (Top View) 7
2. BLOCK DIAGRAM 8
3. PIN FUNCTIONS 9
3.1 PORT PINS 9
3.2 NON PORT PINS 11
3.3 PIN INPUT/OUTPUT CIRCUITS 13
3.4 RECOMMENDED PROCESSING OF UNUSED PINS 15
3.5 NOTES ON USING THE P00/INT4, AND RESET PINS 16
4. MEMORY CONFIGURATION 16
5. PERIPHERAL HARDWARE FUNCTIONS 20
5.1 PORTS 20
5.2 CLOCK GENERATOR CIRCUIT 21
5.3 CLOCK OUTPUT CIRCUIT 22
5.4 BASIC INTERVAL TIMER 23
5.5 WATCH TIMER 24
5.6 TIMER/EVENT COUNTER 25
5.7 SERIAL INTERFACE 27
5.8 LCD CONTROLLER/DRIVER 29
5.9 BIT SEQUENTIAL BUFFER 31
6. INTERRUPT FUNCTIONS 31
7. STANDBY FUNCTIONS 33
8. RESET FUNCTION 34
9. INSTRUCTION SET 36
10. SELECTION OF MASK OPTION 42
11. ELECTRICAL SPECIFICATIONS 43
12. PACKAGE DRAWINGS 55
13. RECOMMENDED SOLDERING CONDITIONS 57
APPENDIX A. COMPARISION OF FEATURES AMONG THIS SERIES PRODUCTS 58
APPENDIX B. DEVELOPMENT TOOLS 59
APPENDIX C. RELATED DOCUMENTS 60

1. PIN CONFIGURATIONTOp View)

P00-P03 : Port 0
P10-P13 : Port 1
P20-P23 : Port 2
P30-P33 : Port 3
P40-P43 : Port 4
P50-P53 : Port 5
P60-P63 : Port 6
P70-P73 : Port 7
BP0-BP7 : Bit Port
KR0-KR7 : Key Return
SCK : Serial Clock
SI : Serial Input
SO : Serial Output
SB0, SB1: Serial Bus 0,1
RESET : Reset Input

S0-S31 : Segment Output 0-31
COMO-COM3 : Common Output 0-3
Vlco-Vlcz : LCD Power Supply 0-2
BIAS : LCD Power Supply Bias Control
LCDCL : LCD Clock
SYNC : LCD Synchronization
TIO : Timer Input 0
PTOO : Programmable Timer Output 0
BUZ : Buzzer Clock
PCL : Programmable Clock
INT0, INT1, INT4: External Vectored Interrupt 0, 1, 4
INT2 : External Test Input 2
X1, X2 : Main System Clock Oscillation 1, 2
XT1, XT2 : Subsystem Clock Oscillation 1, 2
NC : No Connection

3. PIN FUNCTIONS

3.1 PORT PINS (1/2)

Pin Name	Input/Output	Also Served As	Function	8-Bit I/O	When Reset	Input/ Output Circuit TYPE *
P00	Input	INT4	4-bit input port (PORTO) Pull-up resistors can be specified in 3-bit units for the P01 to P03 pins by software.	\times	Input	B
P01	Input/ Output	$\overline{\text { SCK }}$				(F)-A
P02	Input/ Output	SO/SB0				(F)-B
P03	Input/ Output	SI/SB1				(M)-C
P10	Input	INTO	With noise elimination function 4-bit input port (PORT1) Internal pull-up resistors can be specified in 4-bit units by software.	\times	Input	(B)- C
P11		INT1				
P12		INT2				
P13		TIO				
P20	Input/ Output	PTOO	4-bit input/output port (PORT2) Internal pull-up resistors can be specified in 4-bit units by software.	\times	Input	E-B
P21		-				
P22		PCL				
P23		BUZ				
P30	Input/ Output	LCDCL	Programmable 4-bit input/output port (PORT3) This port can be specified for input/ output in bit units. Internal pull-up resistors can be specified in 4-bit units by software.	\times	Input	E-B
P31		SYNC				
P32		-				
P33		-				
P40-43	Input/ Output	-	N-ch open-drain 4-bit input/output port (PORT4) Internal pull-up resistors can be specified in bit units. (mask option) Withstand voltage is 10 V in the opendrain mode.	\bigcirc	High level (with internal pull-up resistor) or high impedance	M
P50-53	Input/ Output	-	N-ch open-drain 4-bit input/output port (PORT5) Internal pull-up resistors can be specified in bit units. (mask option) Withstand voltage is 10 V in the opendrain mode.		High level (with internal pull-up resistor) or high impedance	M

*: Circles indicate Schmitt trigger inputs.

3.1 PORT PINS (2/2)

Pin Name	Input/Output	Also Served As	Function	8-Bit I/O	When Reset	Input/ Output Circuit TYPE**
P60	Input/ Output	KRO	Programmable 4-bit input/output port (PORT6) This port can be specified for input/ output in bit units. Internal pull-up resistors can be specified in 4-bit units by software.	\bigcirc	Input	(F) -A
P61		KR1				
P62		KR2				
P63		KR3				
P70	Input/ Output	KR4	4-bit input/output port (PORT7) Internal pull-up resistors can be specified in 4-bit units by software.		Input	(F) -A
P71		KR5				
P72		KR6				
P73		KR7				
BPO	Output	S24	1-bit output port (BIT PORT) Shared with a segment output pin.	\times	*2	G-C
BP1		S25				
BP2		S26				
BP3		S27				
BP4	Output	S28				
BP5		S29				
BP6		S30				
BP7		S31				

*1: Circles indicate Schmitt trigger inputs.
2: For BP0-7, VLC1 indicated below are selected as the input source. However, the output level is changed depending on BPO-7 and the VLC1 external circuits.

Example: Since BP0-7 are connected to each other within the μ PD75316(A) as shown in the diagram below, the output level of BPO-7 depends on the sizes of R_{1}, R_{2} and R_{3}.

3.2 NON PORT PINS

Pin Name	Input/Output	Also Served As	Functon		When Reset	Input/ Output Circuit TYPE**
TIO	Input	P13	Timer/event counter external event pulse Input		Input	(B)-C
PTOO	Input/ Output	P20	Timer/event counter output		Input	E-B
PCL	Input/ Output	P22	Clock output		Input	E-B
BUZ	Input/ Output	P23	Fixed frequency output (for buzzer or for trimming the system clock)		Input	E-B
SCK	Input/ Output	P01	Serial clock input/output		Input	(F-A
SO/SB0	Input/ Output	P02	Serial data output Serial bus input/output		Input	(F)-B
SI/SB1	Input/ Output	P03	Serial data input Serial bus input/output		Input	(M)-C
INT4	Input	P00	Edge detection vector interrupt input (both rising and falling edge detection are effective)		Input	(B)
INTO	Input	P10	Edge detection vector interrupt input (detection edge can be selected)	Clock synchronous	Input	(B)-C
INT1		P11		Asynchronous		
INT2	Input	P12	Edge detection testable input (rising edge detection)	Asynchronous	Input	(B)-C
KRO-KR3	Input/ Output	P60-P63	Parallel falling edge detection testable input		Input	(F-A
KR4-KR7	Input/ Output	P70-P73	Parallel falling edge detection testable input		Input	(F-A
S0-S23	Output	-	Segment signal output		*2	G-A
S24-S31	Output	BPO-7	Segment signal output		*2	G-C
COMOCOM3	Output	-	Common signal output		*2	G-B
V Lco-VLC2	-	-	LCD drive power Internal dividing resistor (mask option)		-	-
BIAS	Output	-	Disconnect output for external expanded driver		*3	-
LCDCL*4	Input/ Output	P30	Externally expanded driver clock output		Input	E-B
SYNC*4	Input/ Output	P31	Externally expanded driver sync clock output		Input	E-B
X1, X2	Input	-	To connect the crystal/ceramic oscillator to the main system clock generator. When inputting the external clock, input the external clock to pin X1, and the reverse phase of the external clock to pin X2.		-	-
XT1	Input	-	To connect the crystal oscillator to the subsystem clock generator. When the external clock is used, pin XT1 inputs the external clock. In this case, pin XT2 must be left open. Pin XT1 can be used as a 1-bit input (test) pin.		-	-
XT2	-	-				

(to be cont'd)
(cont'd)

Pin Name	Input/Output	Also Served As	Function	When Reset	Input/ Output Circuit TYPE*1
RESET	Input	-	System reset input	-	(B)
NC *5	-	-	No connection	-	-
VdD	-	-	Positive power supply	-	-
Vss	-	-	GND	-	-

*1: Circles indicate Schmitt trigger inputs.
2: For these display output, VLCx indicated below are selected as the input source.
S0 to S31: Vlc1, COM0 to COM2: Vlc2, COM3: Vlco
However, display output level varies depending on the particular display output and VLcx external circuit.
3: Internal dividing resistor provided : Low level
Internal dividing resistor not provided : High impedance
4: These pins are provided for future system expansion. At present, these pins are used only as pins P30 and P31.
5: When sharing the printed circuit board with the μ PD75P316 and 75P316A, the NC pin must be connected to VDD.

3.3 PIN INPUT/OUTPUT CIRCUITS

The following shows a simplified input/output circuit diagram for each pin of the μ PD75316(A).
TYPE A (for TYPE E-B)

3.4 RECOMMENDED PROCESSING OF UNUSED PINS

Table 3-1 Unused Pins Processing

Pin	Recommended Connections
P00/INT4	Connect to Vss
P01/SCK	Connect to Vss or Vdd
P02/SO/SB0	
P03/SI/SB1	
P10/INT0-P12/INT2	Connect to Vss
P13/TI0	
P20/PTO0	Input : Connect to Vss or VdD Output: Open
P21	
P22/PCL	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32	
P33	
P40-P43	
P50-P53	
P60/KR0-P63/KR3	
P70/KR4-P73/KR7	
S0-S23	Open
S24/BP0-S31/BP7	
COMO-COM3	
Vlco-Vlc2	Connect to Vss
BIAS	Connect to Vss only when all of the Vlco-Vlc2 pins are unused, otherwise, open.
XT1	Connect to Vss or Vod
XT2	Open

3.5 NOTES ON USING THE POO/INT4, AND RESET PINS

In addition to the functions described in Sections 3.1 and 3.2, an exclusive function for setting the test mode, in which the internal fuctions of the $\mu \mathrm{PD} 75316(\mathrm{~A})$ are tested, is provided to the P00/INT4 and RESET pins.

If a voltage exceeding $V_{D D}$ is applied to either of these pins, the $\mu \mathrm{PD} 75316(\mathrm{~A})$ is put into test mode. Therefore, even when the $\mu \mathrm{PD} 75316(\mathrm{~A})$ is in normal operation, if noise exceeding the $V_{D D}$ is input into any of these pins, the μ PD75316(A) will enter the test mode, and this will cause problems for normal operation.

As an example, if the wiring to the P00/INT4 pin or the RESET pin is long, stray noise may be picked up and the above montioned problem may occur.

Therefore, all wiring to these pins must be made short enough to not pick up stray noise. If noise cannot be avoided, suppress the noise using a capacitor or diode as shown in the figure below.

- Connect a diode having a low V_{F} across P00/INT4 and RESET, and VdD.

- Connect a capacitor across P00/INT4 and $\overline{R E S E T}$, and Vdo.

4. MEMORY CONFIGURATION

- Program memory (ROM) ... 16256×8 bits (0000H-3F7FH): μ PD75316(A)
$\ldots 12160 \times 8$ bits (0000H-2F7FH): μ PD75312(A)
- $0000 \mathrm{H}, 0001 \mathrm{H}:$ Vector table to which address from which program is started is written after reset
- $0002 \mathrm{H}-000 \mathrm{BH}:$ Vector table to which address from which program is started is written after interrupt
- 0020H-007FH: Table area referenced by GETI instruction
- Data memory
- Data area 512×4 bits ($000 \mathrm{H}-1 \mathrm{FFH}$)
- Peripheral hardware area 128×4 bits (F80H-FFFH)
(a) $\mu \mathrm{PD} 75316(\mathrm{~A})$

Fig. 4-1 Program Memory Map (1/2)
(b) μ PD75312(A)

Fig. 4-1 Program Memory Map (2/2)

Fig. 4-2 Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 PORTS

I/O ports are classified into the following 4 kinds:

- CMOS input (PORT0, 1) : 8
- CMOS input/output (PORT2,3,6,7) : 16
- N-ch open-drain (PORT4,5) : 8
- CMOS output (BP0-BP7) : 8

Total : 40

Port Name	Function	Operation and Feature	Remarks
PORT0	4-bit input	Can be always read or tested regardless of operation mode of multiplexed pin.	Multiplexed with INT4, SCK, SO/SB0, and SI/SB1
PORT1			Multiplexed with INTOINT2 and TIO
PORT2	4-bit Input/Output	Can be set in input or output mode in 4-bit units. Ports 6 and 7 are used in pairs to input/output data in 8-bit units.	Multiplexed with PTOO, PCL, and BUZ
PORT7			Multiplexed with KR4-KR7
PORT3		Can be set in input or output mode in 1-bit units.	Multiplexed with LCDCL and SYNC
PORT6			Multiplexed with KRO-KR3
PORT4 PORT5	4-bit Input/Output (N -ch open-drain, 10 V)	Can be set in input or output mode in 4-bit units. Ports 4 and 5 are used in pairs to input/output data in 8-bit units.	Can be connected to a pull-up resistor in 1-bit units by using mask option.
BPO-BP7	1-bit output	Output data in 1-bit units. Can be used as LCD drive segment output pins S24-S31 through software.	Low drive capability For driving CMOS load

5.2 CLOCK GENERATOR CIRCUIT

The operation of the clock generator circuit is determined by the processor clock control regiser (PPC) and system clock control register (SCC).

This circuit can generate two types of clocks: main system clock and subsystem clock.
In addition, it can also change the instruction execution time.

- $0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 15.3 \mu \mathrm{~s}$ (main system clock: 4.19 MHz)
- 122μ (subsystem clock: 32.768 kHz)

Remarks 1: $f_{X}=$ Main system clock frequency
2: $f_{X T}=$ Subsystem clock frequency
3: PCC: Processor clock control register
4: SCC: System clock control register
5: *: instruction execution.
6: One clock cysle (tcy) of Φ is one machine cycle of an instruction. For tcy, refer to AC characteristics in 11. ELECTRICAL SPECIFICATIONS.

Fig. 5-1 Clock Generator Block Diagram

5.3 CLOCK OUTPUT CIRCUIT

The clock output circuit outputs clock pulse from the P22/PCL pin. This clock pulse is used for the remote control output, peripheral LSIs, etc.

- Clock output (PCL) : $\Phi, 524,262,65.5 \mathrm{kHz}$ (operating at 4.19 MHz)
- Buzzer output (BUZ) : 2 kHz (operating at 4.19 MHz or 32.768 kHz)

Fig. 5-2 shows the clock output circuit configuration.

Fig. 5-2 Clock Output Circuit Configuration

Remarks: A measures to prevent outputting narrow width pulse when selecting clock output enable/ disable is taken.

5.4 BASIC INTERVAL TIMER

The basic interval timer has these functions:

- Interval timer operation which generates a reference time interrupt
- Watchdog timer application which detects a program runaway
- Selects the wait time for releasing the standby mode and counts the wait time
- Reads out the count value

Remarks : *: Instruction execution
Fig. 5-3 Basic Interval Timer Configuration

5.5 WATCH TIMER

The μ PD75316(A) has a built-in 1-ch watch timer. The watch timer is configured as shown in Fig. 5-4.

- Sets the test flag (IRQW) with 0.5 sec interval.

The standby mode can be released by IRQW.

- 0.5 second interval can be generated either from the main system clock or subsystem clock.
- Time interval can be advanced to 128 times faster (3.91 ms) by setting the fast mode. This is convenient for program debugging, test, etc.
- Fixed frequency (2.048 kHz) can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming.
- The frequency divider circuit can be cleared so that zero second watch start is possible.

() is for $f \mathrm{x}=4.194304 \mathrm{MHz}, \mathrm{fxT}^{2}=32.768 \mathrm{kHz}$.

Fig. 5-4 Watch Timer Block Diagram

5.6 TIMER/EVENT COUNTER

The μ PD75316(A) has a built-in 1-ch timer/event counter. The timer/even counter has these functions:

- Programmable interval timer operation
- Outputs square-wave signal of an arbitrary frequency to the PTOO pin.
- Event counter operation
- Divides the TIO pin input in N and outputs to the PTOO pin (frequency divider operation).
- Supplies serial shift clock to the serial interface circuit.
- Count condition read out function

*1: SET1: Instruction execution
2: For details, refer to Fig. 5-1.
Fig. 5-5 Timer/Event Counter Block Diagram

5.7 SERIAL INTERFACE

The μ PD75316(A) is equipped with an 8-bit clocked serial interface that operates in the following three modes:

- Three-line serial I/O mode
- Two-line serial I/O mode
- SBI mode (serial bus interface mode)

Fig. 5-6 Serial Interface Block Diagram

5.8 LCD CONTROLLER/DRIVER

The $\mu \mathrm{PD} 75316(\mathrm{~A})$ is provided with a display controller that generates segment and common signals and a segment driver and a common driver that can directly drive an LCD panel.

Figure 5-7 shows the LCD controller/driver configuration.
These LCD controller and drivers have the following functions:

- Generate segment and common signals by automatically reading the display data memory by means of DMA
- Five display modes selectable
(1) Static
(2) $1 / 2$ duty ($1 / 2$ bias)
(3) $1 / 3$ duty ($1 / 2$ bias)
(4) $1 / 3$ duty ($1 / 3$ bias)
(5) $1 / 4$ duty ($1 / 3$ bias)
- Four types of frame frequencies selectable in each display mode
- Up to 32 segment signals (S0-S31) and four common signals (COM0-COM3) can be output.
- Four segment signal output pins (S24-S27, S28-S31) can be used as an output port (BP0-BP3, BP4-BP7).
- Dividing resistor for LCD driving power source can be provided (by mask option).
- All bias modes and LCD drive voltages can be used.
- Current flowing to dividing resistor can be cut when display is off.
- Display data memory not used for display can be used as ordinary data memory.
- Can also operate on subsystem clock.

Internal bus

Fig. 5-7 LCD Controller/Driver Block Diagram

5.9 BIT SEQUENTIAL BUFFER 16 BITS

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially up-dated in bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.

INCS L

Remarks: For the pmem.@L addressing, the specification bit is shifted according to the L register.

Fig. 5-8 Bit Sequential Buffer Format

6. INTERRUPT FUNCTIONS

The μ PD75316(A) has 6 different interrupt sources and multiple interrupt by software control is also possible. The μ PD75316(A) is also provided with two types of test sources, of which INT2 has two types of edge detection testable inputs.

The interrupt control circuit of the μ PD75316(A) has these functions:

- Hardware controlled vector interrupt function which can control whether or not to accept an interrupt by using the interrupt flag (IExxx) and interrupt master enable flag (IME).
- The interrupt start address can be arbitrarily set.
- Interrupt request flag (IROxxx) test function (an interrupt generation can be confirmed by means of software).
- Standby mode release (Interrupts to be released can be selected by the interrupt enable flag).

Fig. 6-1 Interrupt Control Block Diagram

7. STANDBY FUNCTIONS

The μ PD75316(A) has two different standby modes (STOP mode and HALT mode) to reduce the power consumption while waiting for program execution.

Table 7-1 Each Status in Standby Mode

		STOP Mode	HALT Mode
Setting Instruction		STOP instrtuction	HALT instruction
System Clock for Setting		Can be set only when operating on the main system clock	Can be set either with the main system clock or the subsystem clock
Operation Status	Clock Generator	Only the main system clock stops its operation.	Only the CPU clock Φ stops its operation. (oscillation continues)
	Basic Interval Timer	No operation	Operation (Sets IROBT at reference time interval) *
	Serial Interface	Can operate only when the external SCK input is selected for the serial clock	Can operate *
	Timer/Event Counter	Can operate only when the TIO pin input is selected for the count clock	Can operate *
	Watch Timer	Can operate when $\mathrm{fxt}_{\mathrm{t}}$ is selected for the count clock	Can operate
	LCD Controller	Can operate only when $\mathrm{fxt}_{\mathrm{t}}$ is selected for LCDCL	Can operate
	External Interrupt	INT1, INT2, and INT4 can operate. Only INT0 cannot operate.	
	CPU	No operation	
Release Signal		An interrupt request signal from a hardware whose operation is enabled by the interrupt enable flag or the RESET signal input	An interrupt request signal from a hardware whose operation is enabled by the interrupt enable flag or the RESET signal input

*: Operation is possible only when the main system clock is operating.

8. RESET FUNCTION

When the RESET signal is input, the μ PD75316(A) is reset and each hardware is initialized as indicated in Table 8-1. Fig. 8-1 shows the reset operation timing.

Fig. 8-1 Reset Operation by RESET Input

Table 8-1 Status of Each Hardware after Reset (1/2)

Hardware			RESET Input in Standby Mode	$\overline{\text { RESET }}$ Input during Operation
Program Counter (PC)			The contents of the lower 6 bits of address 0000 H of the program memory are set to PC13-8, and the contents of address 0001 H are set to PC7-0.	The contents of the lower 6 bits of address 0000 H of the program memory are set to PC13-8, and the contents of address 0001 H are set to PC7-0.
PSW	Carry Flag (CY)		Retained	Undefined
	Skip Flag (SK0-2)		0	0
	Interrupt Status Flag (ISTO)		0	0
	Bank Enable Flag (MBE)		The contents of bit 7 of address 0000 H of the program memory are set to MBE.	The contents of bit 7 of address 0000 H of the program memory are set to MBE.
Stack Pointer (SP)			Undefined	Undefined
Data Memory (RAM)			Retained *	Undefined
General-Purpose Register (X, A, H, L, D, E, B, C)			Retained	Undefined
Bank Selection Register (MBS)			0	0
Basic Interval Timer		Counter (BT)	Undefined	Undefined
		Mode Register (BTM)	0	0
Timer/Event Counter		Counter (TO)	0	0
		Module Register (TMODO)	FFH	FFH
		Mode Register (TMO)	0	0
		TOEO, TOUT F/F	0, 0	0, 0
Watch Timer		Mode Register (WM)	0	0

[^0]Table 8-1 Status of Each Hardware after Reset (2/2)

Hardware		$\overline{\text { RESET }}$ Input in Standby Mode	$\overline{\mathrm{RESET}}$ Input during Operation
Serial Interface	Shift Register (SIO)	Retained	Undefined
	Operation Mode Register (CSIM)	0	0
	SBI Control Register (SBIC)	0	0
	Slave Address Register (SVA)	Retained	Undefined
Clock Generator, Clock Output Circuit	Processor Clock Control Register (PCC)	0	0
	System Clock Control Register (SCC)	0	0
	Clock Output Mode Register (CLOM)	0	0
LCD Controller	Display Mode Register (LCMD)	0	0
	Display Control Register (LCDC)	0	0
Interrupt Function	Interrupt Request Flag (IRQxxx)	Reset (0)	Reset (0)
	Interrupt Enable Flag (IExxx)	0	0
	Interrupt Master Enable Flag (IME)	0	0
	INT0, INT1, INT2 Mode Registers (IMO, 1, 2)	0, 0, 0	0, 0, 0
Digital Port	Output Buffer	Off	Off
	Output Latch	Clear (0)	Clear (0)
	Input/Output Mode Register (PMGA, B)	0	0
	Pull-Up Resistor Specification Register (POGA)	0	0
Bit Sequential Buffer (BSB0-3)		Retained	Specified

9. INSTRUCTION SET

(1) Operand representation and description

Describe one or more operands in the operand field of each instruction according to the operand representation and description methods of the instruction (for details, refer to RA75X Assembler Package User's Manual - Language (EEU-730)). With some instructions, only one operand should be selected from several operands. The uppercase characters, + , and - are keywords and must be described as is.

Describe an appropriate numeric value or label as immediate data.
The symbols in the register and flag symbols can be described as labels in the places of mem, fmem, pmem, and bit (for details, refer to μ PD75308 User's Manual (IEM-5016)). However, fmem and pmem restricts the label that can be described.

Representation	Description
$\begin{aligned} & \text { reg } \\ & \text { reg1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
$\begin{aligned} & \text { rp } \\ & \text { rp1 } \\ & \text { rp2 } \end{aligned}$	XA, BC, DE, HL BC, DE, HL BC, DE
rpa rpa1	HL, DE, DL DE, DL
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8 -bit immediate data or label
$\operatorname{mem}_{\text {bit }}^{*}$	8-bit immediate data or label 2-bit immediate data or label
fmem pmem	FBOH to FBFH,FFOH to FFFH immediate data or label FCOH to FFFH immediate data or label
addr	μ PD75312(A) $00000 \mathrm{H}-2 \mathrm{F7FH}$ immediate data or label
	μ PD75316(A) $0000 \mathrm{H}-3 \mathrm{F7FH}$ immediate data or label
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20 H to 7FH immediate data (where bit0 $=0$) or label
PORTn IExxx MBn	PORTO to PORT7 IEBT, IECSI, IETO, IE0, IE1, IE2, IE4, IEW MB0, MB1, MB15

*: Only even addresses can be described as mem for 8 -bit data processing.
(2) Legend of operation field

A	: A register; 4-bit accumulator
B	: B register; 4-bit accumulator
C	: C register; 4-bit accumulator
D	: D register; 4-bit accumulator
E	: E register; 4-bit accumulator
H	: H register; 4-bit accumulator
L	: L register; 4-bit accumulator
X	: X register; 4-bit accumulator
XA	: Register pair (XA); 8-bit accumulator
BC	: Register pair (BC); 8-bit accumulator
DE	: Register pair (DE); 8-bit accumulator
HL	: Register pair (HL); 8-bit accumulator
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; or bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
PORTn : Port n (n = 0 to 7)	
IME	: Interrupt mask enable flag
IExxx	: Interrupt enable flag
MBS	: Memory bank selector register
PCC	: Processor clock control register
P	: Delimiter of address and bit
(xx)	: Contents addressed by xx
xxH	: Hexadecimal data

(3) Symbols in addressing area field

* 1	$\begin{aligned} & \mathrm{MB}=\mathrm{MBE} \cdot \mathrm{MBS} \\ & (\mathrm{MBS}=0,1,15) \end{aligned}$		Data memory addressing
*2	$\mathrm{MB}=0$		
*3	$\begin{aligned} & \mathrm{MBE}=0: \mathrm{MB}=0(00 \mathrm{H}-7 \mathrm{FH}) \\ & \mathrm{MB}=15(80 \mathrm{H}-\mathrm{FFH}) \\ & \mathrm{MBE}=1: \mathrm{MB}=\mathrm{MBS}(\mathrm{MBS}=0,1,15) \end{aligned}$		
* 4	$\begin{aligned} \mathrm{MB}=15, \text { fmem }= & \text { FBOH-FBFH, } \\ & \text { FFOH-FFFH } \end{aligned}$		
*5	$\mathrm{MB}=15$, pmem $=$ FCOH-FFFH		
* 6	$\mu \mathrm{PD} 75312(\mathrm{~A})$	addr $=0000 \mathrm{H}-2 \mathrm{~F} 7 \mathrm{FH}$	Program memory addressing
	$\mu \mathrm{PD} 75316$ (A)	addr $=0000 \mathrm{H}-3 \mathrm{~F} 7 \mathrm{FH}$	
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$		
* 8	$\mu \mathrm{PD} 75312(\mathrm{~A})$	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H}-0 \mathrm{FFFH}\left(\mathrm{PC}_{13}=0, \mathrm{PC}_{12}=0\right) \text { or } \\ & \text { 1000H-1FFFH }\left(\mathrm{PC}_{13}=0, \mathrm{PC}_{12}=1\right) \text { or } \\ & 2000 \mathrm{H}-2 \mathrm{~F} 7 \mathrm{FH}\left(\mathrm{PC}_{13}=1, \mathrm{PC}_{12}=0\right) \end{aligned}$	
	$\mu \mathrm{PD} 75316$ (A)	$\begin{aligned} \text { caddr }= & 0000 \mathrm{H}-0 \mathrm{FFFH}\left(\mathrm{PC}_{13}=0, \mathrm{PC}_{12}=0\right) \text { or } \\ & \text { 1000H-1FFFH }\left(\mathrm{PC}_{13}=0, \mathrm{PC}_{12}=1\right) \text { or } \\ & \text { 2000H-2FFFH }\left(\mathrm{PC}_{13}=1, \mathrm{PC}_{12}=0\right) \text { or } \\ & 3000 \mathrm{H}-3 F 7 \mathrm{FH}\left(\mathrm{PC}_{13}=1, \mathrm{PC}_{12}=1\right) \end{aligned}$	
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$		
*10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$		

Remarks 1: MB indicates memory bank that can be accessed.
2: In *2, MB $=0$ regardless of MBE and MBS.
3: In *4 and ${ }^{*} 5, M B=15$ regardless of MBE and MBS.
4: *6 to *10 indicate areas that can be addressed.
(4) Machine cycle field

In this field, S indicates the number of machine cycles required when an instruction having a skip function skips. The value of S varies as follows:

- When no instruction is skipped ... S = 0
- When 1-byte or 2-byte instruction is skipped ... $\mathrm{S}=1$
- When 3-byte instruction (BR!addr or CALL! addr) is skipped $S=2$

Note: The GETI instruction is skipped in one machine cycle.

One machine cycle equals to one cycle of the CPU clock $\Phi_{\text {, (}}=\mathrm{tcy}$), and can be changed in three steps depending on the setting of the processor clock control register (PCC).

Instructions	Mnemonics	Operand	Bytes	Machine Cycles	Operation	Ad-dressing Area	Skip Conditions
Transfer	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String effect A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String effect A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String effect B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @ HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @rpa1	1	1	$A \leftarrow($ rpa1 $)$	*2	
		XA, @ HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@ HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@ HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$\mathrm{A} \leftarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$\mathrm{XA} \leftarrow(\mathrm{mem})$	*3	
		mem, A	2	2	$($ mem $) \leftarrow A$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$\mathrm{A} \leftarrow \mathrm{reg}$		
		XA, rp	2	2	$X A \leftarrow r p$		
		reg1, A	2	2	reg1 $\leftarrow \mathrm{A}$		
		rp1, XA	2	2	$\mathrm{rp} 1 \leftarrow \mathrm{XA}$		
	XCH	A, @ HL	1	1	$A \leftrightarrow(H L)$	*1	
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow(\mathrm{rpa1})$	*2	
		XA, @ HL	2	2	$\mathrm{XA} \leftrightarrow(\mathrm{HL})$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow$ (mem)	*3	
		XA, mem	2	2	$\mathrm{XA} \leftrightarrow$ (mem)	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp	2	2	$X A \leftrightarrow r p$		
Table Reference	MOVT	XA, @PCDE	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{13-8}+\mathrm{DE}\right)_{\text {Rom }}$		
		XA, @PCXA	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{13-8}+\mathrm{XA}\right)_{\text {Rom }}$		
Arithmetic Operation	ADDS	A, \#n4	1	1+S	$A \leftarrow A+n 4$		carry
		A, @ HL	1	1+S	$A \leftarrow A+(H L)$	*1	carry
	ADDC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	*1	
	SUBS	A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}$-(HL)	*1	borrow
	SUBC	A, @HL	1	1	A, $\mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	
	AND	A, \#n4	2	2	$\mathrm{A} \leftarrow \mathrm{A} \wedge \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	*1	
	OR	A, \#n4	2	2	$\mathrm{A} \leftarrow \mathrm{A} \vee \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \vee(H L)$	*1	
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A *(H L)$	*1	
Accumu- lator Manipu- lation	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{n-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		

Instructions	Mnemonics	Operand	Bytes	Machine Cycles	Operation	Ad-dressing Area	Skip Conditions
Incre- ment/ Decre- ment	INCS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		@ HL	2	2+S	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	* 1	$(\mathrm{HL})=0$
		mem	2	2+S	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
Compare	SKE	reg, \#n4	2	2+S	Skip if reg $=\mathrm{n} 4$		$\mathrm{reg}=\mathrm{n} 4$
		@ HL, \#n4	2	2+S	Skip if (HL) $=\mathrm{n} 4$		* $1(\mathrm{HL})=\mathrm{n} 4$
		A, @ HL	1	1+S	Skip if $A=(H L)$	*1	$A=(H L)$
		A, reg	2	2+S	Skip if $A=$ reg		$\mathrm{A}=\mathrm{reg}$
Carry flag Manipu- lation	SET1	CY	1	1	$\mathrm{CY} \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	1+S	Skip if $\mathrm{CY}=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		
Memory/ Bit Manipu- lation	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem.bit) $\leftarrow 1$	*4	
		pmem.@L	2	2		*5	
		@ H+mem.bit	2	2	$(\mathrm{H}+$ mem3-0.bit $) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem.bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem.bit) $\leftarrow 0$	*4	
		pmem. @ L	2	2	$\left(\right.$ pmem7-2 $+\mathrm{L}_{3-2}$. bit $\left.\left(\mathrm{L}_{1-0}\right)\right) \leftarrow 0$	* 5	
		@ H+mem.bit	2	2	($\mathrm{H}+$ mem $_{3-0 . \mathrm{bit})} \leftarrow 0$	*1	
	SKT	mem.bit	2	2+S	Skip if (mem.bit) $=1$	*3	(mem.bit) $=1$
		fmem.bit	2	2+S	Skip if (fmem.bit) = 1	*4	(fmem.bit) = 1
		pmem.@L	2	2+S	Skip if (pmem7-2+L3-2.bit $\left.\left(\mathrm{L}_{1-0}\right)\right)=1$	*5	(pmem.@L) = 1
		@ H+mem.bit	2	$2+$ S	Skip if ($\mathrm{H}+$ mem $_{3 \text {-o.bit }}$) $=1$	* 1	(@H+mem.bit) = 1
	SKF	mem.bit	2	2+S	Skip if (mem.bit) $=0$	*3	(mem.bit) $=0$
		fmem.bit	2	2+S	Skip if (fmem.bit) $=0$	* 4	(fmem.bit) $=0$
		pmem.@L	2	2+S	Skip if (pmem7-2 $+\mathrm{L}_{3-2}$.bit $\left(\mathrm{L}_{1-0}\right)$) $=0$	*5	(pmem. @ L) = 0
		@ H+mem.bit	2	2+S	Skip if ($\mathrm{H}+$ mem $_{3-0}$.bit) $=0$	*1	$(@ H+m e m . b i t)=0$
	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit) = 1 and clear	* 4	(fmem.bit) $=1$
		pmem.@L	2	2+S	Skip if (pmem7-2+L3-2.bit ($\mathrm{L} 1-0)$) $=1$ and clear	*5	(pmem.@L) = 1
		@ H+mem.bit	2	2+S	Skip if (H+mem3-0.bit) $=1$ and clear	*1	(@H+mem.bit) = 1
	AND1	CY,fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	* 4	
		CY,pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left({\left.\text { pmem7-2+L3-2.bit }\left(\mathrm{L}_{1-0}\right)\right)}^{\text {a }}\right.$	*5	
		CY, @H+mem.bit	2	2		*1	
	OR1	CY,fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem.bit)	* 4	
		CY,pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} \text {.bit }\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (H+mem3-0.bit)	*1	
	XOR1	CY,fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (fmem.bit)	* 4	
		CY,pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \checkmark\left(\right.$ pmem7-2+L3-2.bit $\left.\left(\mathrm{L}_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ ($\mathrm{H}+$ mem 3 -0.bit)	*1	

Instructions	Mnemonics	Operand	Bytes	Machine Сусles	Operation	Ad-dressing Area	Skip Conditions
Branch	BR	addr	-	-	$\mathrm{PC}_{13-0} \leftarrow \mathrm{addr}$ (The most suitable instruction is selectable from among $B R$!addr, BRCB !caddr, and BR \$addr depending on the assembler.)	*6	
		!addr	3	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{addr}$	* 6	
		\$addr	1	2	$\mathrm{PC}_{13-0} \leftarrow \mathrm{addr}$	*7	
	BRCB	!caddr	2	2	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13,12+}$ caddr $_{11-0}$	*8	
Subrou- tine/ Stack Control	CALL	!addr	3	3	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0, \mathrm{PC}_{13}, \mathrm{PC}_{12} \\ & \mathrm{PC}_{13-0} \leftarrow \mathrm{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	* 6	
	CALLF	! faddr	2	2	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0, \mathrm{PC}_{13}, \mathrm{PC}_{12} \\ & \mathrm{PC}_{13-0} \leftarrow 00, \text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	*9	
	RET		1	3	$\begin{aligned} & \mathrm{MBE}, \mathrm{PC}_{13,}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)_{3,1,0} \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$		
	RETS		1	3+S	$\begin{aligned} & \mathrm{MBE}, \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)_{3,1,0} \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \text {, then skip unconditionally } \end{aligned}$		Undefined
	RETI		1	3	$\begin{aligned} & \mathrm{PC}_{13}, \mathrm{PC}_{12} \leftarrow(\mathrm{SP}+1)_{1,0} \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$		
	PUSH	rp	1	1	$(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{rp}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
		BS	2	2	$(\mathrm{SP}-1) \leftarrow \mathrm{MBS},(\mathrm{SP}-2) \leftarrow 0, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
	POP	rp	1	1	$\mathrm{rp} \leftarrow(\mathrm{SP}+1)(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
		BS	2	2	$\mathrm{MBS} \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
Inter- rupt Control	El		2	2	$\mathrm{IME} \leftarrow 1$		
		IExxx	2	2	$\mathrm{IExxx} \leftarrow 1$		
	DI		2	2	$\mathrm{IME} \leftarrow 0$		
		IExxx	2	2	$\mathrm{IExxx} \leftarrow 0$		
I/O	IN	A,PORTn	2	2	$\mathrm{A} \leftarrow \mathrm{PORT}_{\mathrm{n}} \quad(\mathrm{n}=0.7)$		
		XA,PORTn	2	2	$\mathrm{XA} \leftarrow \mathrm{PORT}_{\mathrm{n}+1, \mathrm{PORT}_{\mathrm{n}} \quad(\mathrm{n}=4,6)}$		
	OUT	PORTn,A	2	2	PORT $_{\text {n }} \leftarrow \mathrm{A} \quad(\mathrm{n}=2.7)$		
		PORTn, XA	2	2	PORT $_{n+1}$, PORT $_{n} \leftarrow \mathrm{XA}^{(n=4,6)}$		
CPU Control	HALT		2	2	Set HALT Mode (PCC. $2 \leftarrow 1$)		
	STOP		2	2	Set STOP Mode (PCC. $3 \leftarrow 1$)		
	NOP		1	1	No Operation		
Special	SEL	MBn	2	2	$\mathrm{MBS} \leftarrow \mathrm{n}(\mathrm{n}=0,1,15)$		
	GETI	taddr	1	3	Where TBR instruction, $\mathrm{PC}_{13-0} \leftarrow(\text { taddr })_{5-0}+($ taddr +1$)$	*10	
					Where TCALL instruction, (SP-4)(SP-1)(SP-2) $\leftarrow \mathrm{PC}_{11-0}$ $(\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0, \mathrm{PC}_{13}, \mathrm{PC}_{12}$ $\mathrm{PC}_{13-0} \leftarrow(\text { taddr })_{5-0+}($ taddr +1$)$ $\mathrm{SP} \leftarrow \mathrm{SP}-4$		
					- Except for TBR and TCALL instructions, Instruction execution of (taddr)(taddr+1)		Depends on referenced instruction

Note: When executing the IN/OUT instruction, $\mathrm{MBE}=0$, or $\mathrm{MBE}=1$, and $\mathrm{MBS}=15$.
Remarks: The TBR and TCALL instructions are the assembler pseudo-instructions for the table definition of GETI instruction.

10. SELECTION OF MASK OPTION

The following mask operations are available and can be specified for each pin.

Pin	Mask Option
P40-P43,	- With pull-up resistor (Specification in bit units)
P50-P53	- Without pull-up resistor (Specification in bit units)
VLco-VLC2,	- With dividing resistor for LCD drive power source (Specification in 4-bit units)
BIAS	- Without dividing resistor for LCD drive power source (Specification in 4-bit units)

11. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions		Ratings	Unit
Supply Voltage	Vdo			-0.3 to +7.0	V
Input Voltage	V_{11}	Other than ports 4, 5		-0.3 to V $\mathrm{VD}+0.3$	V
	V_{12}	Ports 4, 5	w/pull-up resistor	-0.3 to Vod+0.3	V
			Open drain	-0.3 to +11	V
Output Voltage	Vo			-0.3 to V $\mathrm{do}+0.3$	V
High-Level Output Current	Іон	1 pin	Peak	-10	mA
			rms	-5	mA
		All pins	Peak	-30	mA
			rms	-5	mA
Low-Level Output Current	loL*	1 pin	Peak	10	mA
			rms	5	mA
		Other than ports 0, 2, 3, 5	Peak	100	mA
			rms	60	mA
		Total of ports 4, 6, 7	Peak	100	mA
			rms	50	mA
Operating Temperature	Topt			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

*: rms $=$ Peak value $\times \sqrt{\text { Duty }}$

CAPACITANCE $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Pins other than thosemeasured are at 0 V			15	pF
Output Capacitance	Cout				15	pF
Input/Output Capacitance	Cıo				15	pF

MAIN SYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS
$\left(\mathrm{T}_{\mathrm{a}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 6.0 V)

Oscillator	Recommended Constants	Item	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic *3		Oscillation frequency(fx)*1		1.0		$5.0^{* 3}$	MHz
		Oscillation stabilization time*2	After Vod came to MIN. of oscillation voltage range			4	ms
Crystal *3		Oscillation frequency (fx)*1		1.0	4.19	5.0 *3	MHz
		Oscillation stabiliza-	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V			10	ms
						30	ms
External Clock		X1 input frequency (fx)*1		1.0		5.0 *3	MHz
		X1 input high-, low-level widths ($\mathrm{txh}, \mathrm{txL}$)		100		500	ns

*1: The oscillation frequency and X1 input frequency are indicated only to express the characteristics of the oscillator circuit.
For instruction execution time, refer to AC Characteristics.
2: Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage range or the STOP mode has been released.
3: When the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 5.0 \mathrm{MHz}$, do not select PCC $=0011$ as the instruction execution time: otherwise, one machine cycle is set to less than $0.95 \mu \mathrm{~s}$, falling short of the rated minimum value of $0.95 \mu \mathrm{~s}$.

SUBSYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{a}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V} D=2.7$ to 6.0 V)

Oscillator	Recommended Constants	Item	Conditions	MIN.	TYP.	MAX.	Unit
Crystal		Oscillation frequency (fxt)		32	32.768	35	kHz
		Oscillation stabiliza-	$\mathrm{V} D \mathrm{D}=4.5$ to 6.0 V		1.0	2	s
						10	s
External Clock	$\frac{\left\|x T 1 \quad x_{T 2}\right\|}{\Delta^{\text {Open }}}$	XT1 input frequency (fxT)*		32		100	kHz
		XT1 input high-, low-level widths (tхтн, tхть)		5		15	$\mu \mathrm{s}$

*: Time required for oscillation to stabilize after $V_{D D}$ reaches the minimum value of the oscillation voltage range.

Note: When using the oscillation circuit of the main system clock and subsystem clock, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:

- Keep the wiring length as short as possible.
- Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VDD. Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce the current dissipation and therefore, the subsystem clock oscillation circuit is influenced by noise more easily than the main system clock oscillation circuit. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.

DC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{a}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-Level Input Voltage	$\mathrm{V}_{\mathrm{H} 1}$	Ports 2, 3		0.7 Vdo		Vdo	V
	$\mathrm{V}_{\mathbf{H} 2}$	Ports 0, 1, 6, 7, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
	Vінз	Ports 4, 5	w/pull-up resistor	0.7 Vdd		Vdo	V
			Open-drain	$0.7 \mathrm{~V}_{\mathrm{DD}}$		10	V
	$\mathrm{V}_{\text {IH4 }}$	X1, X2, XT1		Vdd-0.5		Vdo	V
Low-level Input Voltage	VIL1	Ports 2, 3, 4, 5		0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	VIL2	Ports 0, 1, 6, 7, $\overline{\text { RESET }}$		0		0.2 VDD	V
	VıL3	X1, X2, XT1		0		0.4	V
High-Level Output Voltage	Voh1	Ports 0, 2, 3, 6, 7 and BIAS	$\begin{aligned} & \mathrm{V} \mathrm{DD}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{I} \mathrm{OH}=-1 \mathrm{~mA} \end{aligned}$	VDD-1.0			V
			Іон $=-100 \mu \mathrm{~A}$	Vdo-0.5			V
	Voh2	BP0-7 (with two Іон outputs)	$\begin{aligned} & \text { VDD }=4.5 \text { to } 6.0 \mathrm{~V} \\ & \text { IoH }=-100 \mu \mathrm{~A} \end{aligned}$	VDD-2.0			V
			I он $=-30 \mu \mathrm{~A}$	Vdo-1.0			V
Low-Level Output Voltage	VoL1	Ports 0, 2, 3, 4, 5, 6,7 , and 8	$\begin{aligned} & \text { Ports } 3,4 \text {, and } 5 \\ & \mathrm{VDD}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \text { } \mathrm{CoL}=-15 \mathrm{~mA} \end{aligned}$		0.2	1.0	V
			$\begin{aligned} & \mathrm{V} \mathrm{DD}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{IoL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
			IoL $=400 \mu \mathrm{~A}$			0.5	V
		SB0, 1	Open-drain Pull-up resistor $\geq 1 \mathrm{k} \Omega$			0.2 VDD	V
	VoL2	BPO-7 (with two lot outputs)	$\begin{array}{\|l} \hline \text { VDD }=4.5 \text { to } 6.0 \mathrm{~V} \\ \text { } \mathrm{IoL}=100 \mu \mathrm{~A} \\ \hline \end{array}$			1.0	V
			IoL $=50 \mu \mathrm{~A}$			1.0	V
High-Level Input Leakage Current	ІІاн1	$\mathrm{V}_{1 N}=\mathrm{V}_{\mathrm{DD}}$	Other than below			3	$\mu \mathrm{A}$
	ІІІн2		X1, X2, XT1			20	$\mu \mathrm{A}$
	ІІнз	V IN $=10 \mathrm{~V}$	Ports 4, 5 (open-drain)			20	$\mu \mathrm{A}$
Low-Level Input Leakage Current	ILLL1	V IN $=0 \mathrm{~V}$	Other than below			-3	$\mu \mathrm{A}$
	ILLL2		X1, X2, XT1			-20	$\mu \mathrm{A}$
High-Level Output Leakage Current	ILoH1	Vout $=\mathrm{V}_{\text {DD }}$	Other than below			3	$\mu \mathrm{A}$
	ILoh2	Vout $=10 \mathrm{~V}$	Ports 4, 5 (open-drain)			20	$\mu \mathrm{A}$
Low-Level Output Leakage Current	Itol	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Internal Pull-Up Resistor	RL1	Ports 0, 1, 2, 3, 6, 7 (except P00) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$	15	40	80	$\mathrm{k} \Omega$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	30		300	$\mathrm{k} \Omega$
	RL2	$\begin{aligned} & \text { Ports } 4,5 \\ & V_{\text {OUT }}=V_{D D-}-2.0 \mathrm{~V} \end{aligned}$	V DD $=5.0 \mathrm{~V} \pm 10 \%$	15	40	70	$\mathrm{k} \Omega$
			V DD $=3.0 \mathrm{~V} \pm 10 \%$	10		60	$\mathrm{k} \Omega$
LCD Drive Voltage	Vlcd			2.5		Vdo	V
LCD Step-down Resistor	Rlcd			60	100	150	$\mathrm{k} \Omega$
LCD Output Voltage Deviation (Common) *1	Vodi	$\mathrm{I} \mathrm{o}= \pm 5 \mu \mathrm{~A}$	$\begin{aligned} & V_{\mathrm{LCDO}}=\mathrm{V}_{\mathrm{LCD}} \\ & \mathrm{~V}_{\mathrm{LCD} 1}=\mathrm{V}_{\mathrm{LCD} \times 2 / 3} \end{aligned}$	0		± 0.2	V
LCD Output Voltage Deviation (Segment)	Vods	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{LCD} 2}=\mathrm{V}_{\mathrm{LCD} \times 1} / 3 \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}} \end{aligned}$	0		± 0.2	V

(to be cont'd)
(cont'd)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply Current *2	IdD1	4.19 MHz*3 crystal oscillator$\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 10 \% * 4$			2.5	8	mA
			VDD $=3 \mathrm{~V} \pm 10 \% * 5$			0.35	1.2	mA
	IdD2		HALT mode	$V_{D D}=5 \mathrm{~V} \pm 10 \%$		500	1500	$\mu \mathrm{A}$
				$V_{D D}=3 \mathrm{~V} \pm 10 \%$		150	450	$\mu \mathrm{A}$
	IdD3	$32 \mathrm{kHz}{ }^{* 6}$ crystal oscillato	VDD $=3 \mathrm{~V} \pm 10 \%$			30	90	$\mu \mathrm{A}$
	IDD4		HALT mode	$V_{D D}=3 \mathrm{~V} \pm 10 \%$		5	15	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=0 \mathrm{~V}$ STOP mode	$V_{\text {DD }}=5 \mathrm{~V} \pm 10 \%$			0.5	20	$\mu \mathrm{A}$
			VDD $=3 \mathrm{~V} \pm 10 \%$			0.1	10	$\mu \mathrm{A}$
				$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	5	$\mu \mathrm{A}$

*1: "Voltage deviation" means the difference between the ideal segment or common output value (VLCDn: $\mathrm{n}=0,1,2$) and output voltage.
2: Currents for the built-in pull-up resistor and the LCD step-down resistor are not included.
3: Including when the subsystem clock is operated.
4: When operand in the high-speed mode with the processor clock control register (PCC) set to 0011.
5: When operated in the low-speed mode with the PCC set to 0000.
6: When operated with the subsystem clock by setting the system clock control register (SCC) to 1001 to stop the main system clock operation.

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU Clock Cycle Time (Minimum Instruction Execution Time $=1$ Machine Cycle) ${ }^{* 1}$	tcy	w/main system clock	$\mathrm{V} \mathrm{DD}=4.5$ to 6.0 V	0.95		64	$\mu \mathrm{s}$
				3.8		64	$\mu \mathrm{s}$
		w/sub-system clock		114	122	125	$\mu \mathrm{s}$
TIO Input Frequency	${ }_{\text {fti }}$	$\mathrm{V} \mathrm{DD}=4.5$ to 6.0 V		0		1	MHz
				0		275	kHz
TIO Input High-, LowLevel Widths	$\begin{aligned} & \text { tTTH, } \\ & \mathrm{t}_{\mathrm{T} I \mathrm{~L}} \end{aligned}$	$V_{\text {DD }}=4.5$ to 6.0 V		0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt Input High-, Low-Level Widths	tinth, tinti	INT0		*2			$\mu \mathrm{s}$
		INT1, 2, 4		10			$\mu \mathrm{s}$
		KRO-7		10			$\mu \mathrm{s}$
RESET Low-Level Width	trsL			10			$\mu \mathrm{s}$

*1: The CPU clock (Φ) cycle time is determined by the oscillation frequency of the connected oscillator, system clock control register (SCC), and processor clock control register (PCC).
The figure on the right is cycle time tor vs. supply voltage $V_{D D}$ characteristics at the main system clock.

2 tcy or 128/fx depending on the setting of the interrupt mode register (IMO).

SERIAL TRANSFER OPERATION

Two-Line and Three-Line Serial I/O Modes ($\overline{\mathrm{SCK}}$: internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ Cycle Time	tkcyı	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		1600			ns
				3800			ns
$\overline{\text { SCK }}$ High-, Low-Level Widths	$\begin{aligned} & \text { tKL1 } \\ & \text { tKH1 } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		tксу1/2-50			ns
				tксу1/2-150			ns
SI Set-Up Time (vs. $\overline{\text { SCK }} \uparrow$)	tsıK1			150			ns
SI Hold Time (vs. $\overline{\text { SCK } \uparrow \text {) }}$	tksı1			400			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO Output	tksor	$\mathrm{RL}=1 \mathrm{k} \Omega \text {, }$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V			250	ns
Delay Time		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}^{*}$				1000	ns

TWO-LINE AND THREE-LINE SERIAL I/O MODES ($\overline{\text { SCK: }}$: external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\overline{S C K}}$ Cycle Time	tкç2	V DD $=4.5$ to 6.0 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ High-, Low-Level	tKL2	$V_{\text {DD }}=4.5$ to 6.0 V		400			ns
Widths	tKH2			1600			ns
SI Set-Up Time (vs. $\overline{\text { SCK }} \uparrow$)	tsıк2			100			ns
SI Hold Time (vs. $\overline{\text { SCK }} \uparrow$)	tksi2			400			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO Output	tkso2	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ *	$V_{D D}=4.5$ to 6.0 V			300	ns
Delay Time						1000	ns

*: RL and $C_{\llcorner }$are load resistance and load capacitance of the SO output line.

SBI MODE ($\overline{\text { SCK: }}$ internal clock output (master))

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ Cycle Time	tксү3	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V		1600			ns
				3800			ns
$\overline{\mathrm{SCK}}$ High-, Low-Level Widths	$\begin{aligned} & \text { tкL3 } \\ & \mathrm{t}_{\text {KH3 }} \end{aligned}$			tксуз/2-50			ns
		$\mathrm{V}_{\text {DD }}=4.5$ to 6.0 V		tксуз/2-150			ns
SB0, 1 Set-Up Time (vs. SCK \uparrow)	tsıк3			150			ns
$\begin{array}{\|l} \hline \text { SBO, } 1 \text { Hold Time } \\ \text { (vs. SCK } \uparrow \text {) } \\ \hline \end{array}$	tкsı3			tксуз/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SB0, 1 Output	tkso3	$\mathrm{RL}=1 \mathrm{k} \Omega$,	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V	0		250	ns
Delay Time		pF*		0		1000	ns
	tкsв			tксү3			ns
SB0,1 $\downarrow \rightarrow \overline{\text { SCK }}$	tsbk			tксү3			ns
SB0, 1 Low-Level Width	tsbl			tксүз			ns
SB0, 1 High-Level Width	tsв			tксү3			ns

SBI MODE (SCK: external clock input (slave))

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ Cycle Time	tkcy4	$V_{D D}=4.5$ to 6.0 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ High-, Low-Level Widths	tкı4 tкн4	$V_{D D}=4.5$ to 6.0 V		400			ns
				1600			ns
SB0, 1 Set-Up Time (vs. SCK \uparrow)	tsIK4			100			ns
SB0, 1 Hold Time (vs. SCK \uparrow)	tks14			tксү4/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SB0, 1 Output	tKso4	$\mathrm{RL}=1 \mathrm{k} \Omega,$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V	0		300	ns
De		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}^{*}$		0		1000	ns
$\overline{\text { SCK }} \uparrow \rightarrow$ SB0, $1 \downarrow$	tksb			tKcy4			ns
SB0,1 $\downarrow \rightarrow$ SCK \downarrow	tsbk			tкč4			ns
SB0, 1 Low-Level Width	tsbL			tKcy4			ns
SB0, 1 High-Level Width	tsb			tкı¢4			ns

*: RL and $C_{\llcorner }$are load resistance and load capacitance of the SB0 and SB1 output lines.

AC TIMING TEST POINT (excluding X 1 and XT 1 inputs)

CLOCK TIMING

TIO TIMING

SERIAL TRANSFER TIMING

THREE-LINE SERIAL I/O MODE:

TWO-LINE SERIAL I/O MODE:

SERIAL TRANSFER TIMING

BUS RELEASE SIGNAL TRANSFER:

COMMAND SIGNAL TRANSFER:

INTERRUPT INPUT TIMING:

RESET INPUT TIMING:

LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE ($\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data Retention Supply Voltage	Vddor		2.0		6.0	V
Data Retention Supply Current*1	Iddor	$\mathrm{V}_{\text {dDi }}=2.0 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Release Signal Set Time	tsrel		0			$\mu \mathrm{s}$
Oscillation Stabilization	twait	Released by $\overline{\mathrm{RESET}}$		$2^{17} / \mathrm{fx}$		ms
Wait Time*2		Released by interrupt		*3		ms

*1: Does not include current flowing through internal pull-up resistor
2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent unstable operation when oscillation is started.
3: Depends on the setting of the basic interval timer mode register (BTM) as follows:

BTM3	BTM2	BTM1	BTM0	WAIT time (): fx $=4.19 \mathrm{MHz}$
-	0	0	0	$2^{20} / \mathrm{fx}_{x}$ (approx. 250 ms)
-	0	1	1	$2^{17 / f x}$ (approx. 31.3 ms)
-	1	0	1	$2^{15} / \mathrm{fx}$ (approx. 7.82 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (approx. 1.95 ms)

DATA RETENTION TIMING (releasing STOP mode by RESET)

DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)

12. PACKAGE DRAWINGS

80 PIN PLASTIC OFP (14×20)

NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM		MILLIMETERS
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	0.8	0.031
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.009}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.15	0.006
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
S	3.0 MAX.	0.119 MAX.

80-PIN CERAMIC OFP FOR ES (REFERENCE) (UNITS IN mm)

Caution 1: The metal cap; connected with pin 33, changes to level Vss.
2: The leads on the bottom surface are formed obliquely.
3: The length of the leads is not specified as the cutting of the lead tips is not controlled during the manufacturing process.

13. RECOMMENDED SOLDERING CONDITIONS

It is recommended that μ PD75316(A) be soldered under the following conditions.
For details on the recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting Manual" (IEI-616).

The soldering methods and conditions are not listed here, consult NEC.
Table 13-1 Soldering Conditions
μ PD75312GF(A) - xxx - 3B9: 80-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)
μ PD75316GF(A) - xxx - 3B9: 80-pin plastic QFP ($14 \times 20 \mathrm{~mm}$)

Soldering Method	Soldering Conditions	Symbol for Recommended Condition
Infrared Reflow	Package peak temperature: $230^{\circ} \mathrm{C}$, time: 30 seconds max. $\left(210^{\circ} \mathrm{C}\right.$ min.), number of times: 1	IR30-00-1
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, time: 40 seconds max. $\left(200^{\circ} \mathrm{C} \mathrm{min}.\right)$, number of times: 1	VP15-00-1
Wave Soldering	Soldering bath temperature: $260^{\circ} \mathrm{C}$ max., time: 10 seconds max., number of times: 1, pre-heating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Pin Partial Heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., time: 3 seconds max. (per side)	-

Caution: Do not use two or more soldering methods in combination (except the pin partial heating method).

Notice

A model that can be soldered under the more stringent conditions (infrared reflow peak temperature: $235^{\circ} \mathrm{C}$, number of times: 2, and an extended number of days) is also available. For details, consult NEC.

APPENDIX A. COMPARISION OF FEATURES AMONG THIS SERIES PRODUCTS

Item		μ PD75304(A)	$\mu \mathrm{PD75306}(\mathrm{~A})$	$\mu \mathrm{PD75308}(\mathrm{~A})$	μ PD75312(A)	$\mu \mathrm{PD} 75316$ (A)	μ PD75P308	μ PD75P316	μ PD75P316A
ROM Configuration		Mask ROM					EPROM/One-time PROM*1		
ROM (bits)		$\begin{gathered} \text { OOOH-FFFH } \\ 4096 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-177 \mathrm{FH} \\ 6016 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-1 \mathrm{~F} 7 \mathrm{FH} \\ 8064 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-2 \mathrm{~F} 7 \mathrm{FH} \\ 12160 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-3 \mathrm{~F} 7 \mathrm{FH} \\ 16256 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-1 \mathrm{~F} 7 \mathrm{FH} \\ 8064 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-3 \mathrm{~F} 7 \mathrm{FH} \\ 16256 \times 8 \end{gathered}$	$\begin{gathered} 0000 \mathrm{H}-3 \mathrm{~F} 7 \mathrm{FH} \\ 16256 \times 8 \end{gathered}$
RAM (bits)		$512 \times 4($ bank 0, 1: 256×4)							*2
Instruction Set	3-byte Branch Instruction	None	Provided						
	Others	Commonly provided							
Program Counter		12 bits	13 bits		14 bits		13 bits	14 bits	
Mask Option		- Pull-up resistor for Ports 4,5 - Dividing resistor for LCD driving supply voltage					Not offered		
Vpp, PROM Programming Pin Connections		None					Offered		
Directly Driving LED		Not offered					Offered		
Electrical Charac- teristics	Operating Supply Voltage Range	2.7 to 6.0 V					$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$	2.7 to 6.0 V
	Absolute Maximum Ratings	Differ in high-level output current and low-level output current							
	DC Characteristics	Differ in low-level output voltage							
Quality Grade		Special					Standard		
Package		- $80-$ pin plastic QFP $(14 \times 20 \mathrm{~mm})$					- 80-pin plastic QFP $(14 \times 20$ mm) - 80-pin ceramic LCC w/ window	- 80-pin plastic QFP $(14 \times 20$ mm)	- 80-pin plastic OFP $(14 \times 20$ mm) - 80-pin ceramic LCC w/ window

*1: For the μ PD75P316, only the one-time PROM is provided.
2: 1024×4 (Banks 0, 1, 2, 3, 15: 256×4)

APPENDIX B. DEVELOPMENT TOOLS

The following development support tools are readily available to support development of systems using μ PD75312(A) and 75316(A):

Hardware	$\begin{aligned} & \text { IE-75000-R *1 } \\ & \text { IE-75001-R } \end{aligned}$	In-circuit emulator for 75X series
	IE-75000-R-EM *2	Emulation board for IE-75000-R and IE-75001-R
	EP-75308GF-R	Emulation prove for μ PD75312GF(A) and $75316 \mathrm{GF}(\mathrm{A})$, provided with 80-pin
	EV-9200G-80	conversion socket EV-9200G-80.
	PG-1500	PROM programmer
	PA-75P308GF	PROM programmer adapter solely used for μ PD75P316GF and 75P316AGF. It is connected to PG-1500.
Software	IE Control Program	```Host machine PC-9800 series (MS-DOS'M Ver.3.30 to Ver.5.00A*3) IBM PC/AT }\mp@subsup{}{}{TM}(PC DOS 'M Ver.3.1```
	PG-1500 Controller	
	RA75X Relocatable Assembler	

*1: Maintenance product
2: Not provided with IE-75001-R.
3: Ver. $5.00 / 5.00 \mathrm{~A}$ has a task swap function, but this function cannot be used with this function.

Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).

APPENDIX C. RELATED DOCUMENTS

GENERAL NOTES ON CMOS DEVICES

(1) STATIC ELECTRICITY (ALL MOS DEVICES)

Exercise care so that MOS devices are not adversely influenced by static electricity while being handled.

The insulation of the gates of the MOS device may be destroyed by a strong static charge. Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case, or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use grounding when assembling the MOS device system. Do not leave the MOS device on a plastic plate and do not touch the pins of the device.

Handle boards on which MOS devices are mounted similarly .

(2) PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)

Fix the input level of CMOS devices.
Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its input pin, intermediate level input may be generated due to noise, and an inrush current may flow through the device, causing the device to malfunction. Therefore, fix the input level of the device by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an output pin (whose timing is not specified), each pin should be connected to Vod or GND through a resistor.

Refer to "Processing of Unused Pins" in the documents of each devices.

(3) STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)

The initial status of MOS devices is undefined upon power application.
Since the characteristics of an MOS device are determined by the quantity of injection at the molecular level, the initial status of the device is not controlled during the production process. The output status of pins, I/O setting, and register contents upon power application are not guaranteed. However, the items defined for reset operation and mode setting are subject to guarantee after the respective operations have been executed.

When using a device with a reset function, be sure to reset the device after power application.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties b y or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime system, etc.

[^0]: *: Data of address 0F8H to 0FDH of the data memory becomes undefined when a RESET signal is input.

