4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75068 is a member of the 75 X series of 4-bit single-chip microcomputers.
The minimum instruction execution time of the μ PD75068's CPU is $0.95 \mu \mathrm{~s}$. In addition to this high-speed capability, the chip contains an A/D converter and furnishes high-performance functions such as the serial bus interface (SBI) function compliant with the NEC standard format, providing powerful features and high cost performance. The μ PD75068(A) is a high-reliability version of the μ PD75068.

NEC also provides PROM versions suitable for small-scale production or evaluation samples in system development. The μ PD75P068 is the PROM version for the μ PD75064, 75066, 75068, and the μ PD75P068(A) is that for the μ PD75064(A), 75066(A), 75068(A).

The detailed function descriptions are described in the document below. Please make sure to read this document before starting design.
μ PD75068 User's Manual: IEU-1366

FEATURES

- Variable instruction execution time advantageous to high-speed operation and power-saving:
- $0.95 \mu \mathrm{~s}, 1.91 \mu \mathrm{~s}$, or $15.3 \mu \mathrm{~s}$ (at 4.19 MHz with the main system clock selected)
- $122 \mu \mathrm{~s}$ (at 32.768 kHz with the subsystem clock selected)
- A/D converter (8-bit resolution, successive approximation): 8 channels
- Capable of low-voltage operation: VdD $=2.7$ to 6.0 V
- Timer function: 3 channels
- On-chip NEC standard serial bus interface (SBI)
- Very low-power watch operation enabled ($5 \mu \mathrm{~A}$ TYP. at 3 V)
- Pull-up resistor option allowed for 27 I/O lines
- The μ PD75P068 and 75P068(A) (PROM versions) available: Capable of low-voltage operation (VdD $=2.7$ to 6.0 V)

APPLICATIONS

- μ PD75064, 75066, 75068

Home electronic appliances, air conditioners, cameras, and electronic measuring instruments

- μ PD75064(A), 75066(A), 75068(A)

Automotive electronics

The information in this document is subject to change without notice.

The μ PD75064, 75066, 75068 and μ PD75064(A), 75066(A), 75068(A) differ only in their quality grade. Unless otherwise specified, this data sheet describes the μ PD75068 as the representative product. For products with the suffix (A) attached, please make the following substitutions when reading: μ PD75064 $\rightarrow \mu$ PD75064(A)
μ PD75066 $\rightarrow \mu$ PD75066(A)
μ PD75068 $\longrightarrow \mu$ PD75068(A)

ORDERING INFORMATION

	Part number	Package	Quality Grade
	μ PD75064CU-xxx	42-pin plastic shrink DIP (600 mil)	Standard
	μ PD75064GB-xxx-3B4	44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)	Standard
	μ PD75066CU-xxx	42-pin plastic shrink DIP (600 mil)	Standard
	μ PD75066GB-xxx-3B4	44-pin plastic OFP ($10 \times 10 \mathrm{~mm}$)	Standard
	μ PD75068CU-xxx	42-pin plastic shrink DIP (600 mil)	Standard
	μ PD75068GB-xxx-3B4	44 -pin plastic QFP ($10 \times 10 \mathrm{~mm}$)	Standard
\star	μ PD75064CU(A)-xxx	42-pin plastic shrink DIP (600 mil)	Special
\star	μ PD75064GB(A)-xxx-3B4	44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)	Special
\star	μ PD75066CU(A)-xxx	42-pin plastic shrink DIP (600 mil)	Special
\star	μ PD75066GB(A)-xxx-3B4	44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)	Special
\star	μ PD75068CU(A)-xxx	42-pin plastic shrink DIP (600 mil)	Special
\star	μ PD75068GB(A)-xxx-3B4	44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)	Special

Remark xxx: ROM code suffix
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

DIFFERENCE BETWEEN μ PD7506x SUBSERIES AND μ PD7506x(A) SUBSERIES

Part number	μ PD75064	μ PD75064(A)
	μ PD75066	μ PD75066(A)
Parameter	μ PD75068	μ PD75068(A)
Quality grade	Standard	Special

FUNCTION OVERVIEW

1. PIN CONFIGURATION (TOP VIEW) 5
2. BLOCK DIAGRAM 7
3. PIN FUNCTIONS 8
3.1 Port Pins 8
3.2 Non-Port Pins 9
3.3 Pin Input/Output Circuits 10
3.4 Mask Option Selection 12
3.5 Handling Unused Pins 13
4. MEMORY CONFIGURATION 14
5. PERIPHERAL HARDWARE FUNCTIONS 18
5.1 Ports 18
5.2 Clock Generator 19
5.3 Clock Output Circuit 20
5.4 Basic Interval Timer 21
5.5 Watch Timer 22
5.6 Timer/Event Counter 23
5.7 Serial Interface 24
5.8 A/D Converter 25
5.9 Bit Sequential Buffer 26
6. INTERRUPT FUNCTIONS 27
7. STANDBY FUNCTION 29
8. RESET OPERATION 30
9. INSTRUCTION SET 32
10. ELECTRICAL SPECIFICATIONS 40
11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY) 54
12. PACKAGE DRAWINGS 60
13. RECOMMENDED SOLDERING CONDITIONS 62
APPENDIX A. DEVELOPMENT TOOLS 64
APPENDIX B. RELATED DOCUMENTS 65

1. PIN CONFIGURATION (TOP VIEW)

- 42-pin plastic shrink DIP

- 44-pin plastic OFP

IC : Internally Connected (This pin should be directly connected to VDD)

PIN IDENTIFICATIONS

P00-03	Port 0
P10-13	Port 1
P20-23	Port 2
P30-33	Port 3
P40-43	Port 4
P50-53	Port 5
P60-63	Port 6
P110-113	Port 11
KR0-3	Key Return
SCK	Serial Clock
SI	Serial Input
SO	Serial Output
SB0, 1	Serial Bus 0, 1
RESET	Reset Input
TIO	Timer Input 0
PTO0	Programmable Timer Output 0
BUZ	Buzzer Clock
PCL	Programmable Clock
INT0, 1, 4	External Vectored Interrupt 0, 1, 4
INT2	External Test Input 2
X1, 2	Main System Clock Oscillation 1, 2
XT1, 2	Subsystem Clock Oscillation 1, 2
ANO-7	Analog Input 0-7
AVref	Analog Reference
AVss	Analog Vss
Vdd	Positive Power Supply
Vss	Ground

2. BLOCK DIAGRAM

Note The μ PD75064 uses the program counter of a 12 -bit configuration, the μ PD75066 and μ PD75068 use that of a 13 -bit configuration.

3. PIN FUNCTIONS

3.1 Port Pins

Pin name	Input/ output	Shared with	Function	8-bit I/O	When reset	I/O circuit type ${ }^{\text {Note }} 1$
P00	Input	INT4	4-bit input port (PORTO). For P01 to P03, pull-up resistors can be provided by software in units of 3 bits.	\times	Input	(B)
P01	I/O	$\overline{\text { SCK }}$				(F)-A
P02	I/O	SO/SB0				(F)-B
P03	I/O	SI/SB1				(11) -C
P10	Input	INT0	With noise elimination function	\times	Input	(B) -C
P11		INT1	4-bit input port (PORT1). Pull-up resistors can be provided by software in units of 4 bits.			
P12		INT2				
P13		TIO				
P20	I/O	PTOO	4-bit I/O port (PORT2). Pull-up resistors can be provided by software in units of 4 bits.	\times	Input	E-B
P21		-				
P22		PCL				
P23		BUZ				
P30 Note 2	I/O	-	Programmable 4-bit I/O port (PORT3). I/O can be specified bit by bit. Pull-up resistors can be provided by software in units of 4 bits.	\times	Input	E-B
P31 Note 2		-				
P32 ${ }^{\text {Note } 2}$		-				
P33 ${ }^{\text {Note } 2}$		-				
P40-P43 ${ }^{\text {Note } 2}$	I/O	-	N -ch open-drain 4-bit I/O port (PORT4). A pull-up resistor can be provided for each bit (mask option). Breakdown voltage is 10 V in open-drain mode.	\bigcirc	High level (when pullup resistors are provided) or high impedance	M
P50-P53 ${ }^{\text {Note } 2}$	I/O	-	N-ch open-drain 4-bit l/O port (PORT5). A pull-up resistor can be provided for each bit (mask option). Breakdown voltage is 10 V in open-drain mode.		High level (when pullup resistors are provided) or high impedance	M
P60	I/O	KR0/AN4	Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Pull-up resistors can be provided by software in units of 4 bits.	\times	Input	(Y)-D
P61		KR1/AN5				
P62		KR2/AN6				
P63		KR3/AN7				
P110	Input	AN0	4-bit input port (PORT11).	\times	Input	Y-A
P111		AN1				
P112		AN2				
P113		AN3				

Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.
2. Can directly drive LEDs.

3.2 Non-Port Pins

Pin name	Input/ output	Shared with	Function			When reset	I/O circuit type ${ }^{\text {Note }} 1$	
TIO	Input	P13	Input for receiving external event pulse signal for timer/event counter			-	(B)-C	
PTOO	I/O	P20	Timer/event counter output			Input	E-B	
PCL	I/O	P22	Clock output			Input	E-B	
BUZ	I/O	P23	Output frequency selectable (for buzzer output or system clock trimming)			Input	E-B	
$\overline{\text { SCK }}$	I/O	P01	Serial clock I/O			Input	(F)-A	
SO/SB0	I/O	P02	Serial data output Serial bus I/O			Input	(F)-B	
SI/SB1	I/O	P03	Serial data input Serial bus I/O			Input	(17)-C	
INT4	Input	P00	Edge-detective vectored interrupt input (both rising and falling edges enabled)			-	(B)	
INTO	Input	P10	Edge-detective vectored interrupt input (detection edge selectable)		Note 2	-	(B)-C	
INT1		P11			Note 3			
INT2	Input	P12	Edge-detective testable input (rising edge detection)		Note 3	-	(B)-C	
KRO-KR3	I/O	$\begin{aligned} & \text { P60-P63/ } \\ & \text { AN4-AN7 } \end{aligned}$	Parallel falling edge detection testable input			Input	(Y)-D	
ANO - AN3	Input	P110-P113	For A/D converter only	8-bit analog input		Input	Y-A	
AN4 - AN7	I/O	$\begin{aligned} & \text { P60 - P63/ } \\ & \text { KRO - KR3 } \end{aligned}$				(Y)-D		
A $\mathrm{V}_{\text {ref }}$	Input	-		Reference voltage input			-	Z
AVss	-	-		GND potential		-	Z	
X1, X2	Input	-	Crystal/ceramic connection for main system clock generation. When external clock signal is used, the signal should be applied to X 1 , and its reverse phase signal to X 2 .			-	-	
XT1, XT2	Input	-	Crystal connection for subsystem clock generation. When external clock signal is used, the signal should be applied to XT1, and its reverse phase signal to XT2. XT1 can be used as a 1-bit input (test).			-	-	
$\overline{\text { RESET }}$	Input	-	System reset input			-	(B)	
IC	-	-	Internally connected. (Connect this pin directly to Vod)			-	-	
VDD	-	-	Positive power supply			-	-	
Vss	-	-	GND potential			-	-	

Notes 1. The circle (\bigcirc) indicates the Schmitt trigger input.
2. Clock synchronous
3. Asynchronous

3.3 Pin Input/Output Circuits

The input/output circuit of each μ PD75068 pin is shown below in a simplified manner.
(1/3)
Type A (For type E-B) Type D (For type E-B, F-A)

3.4 Mask Option Selection

The following mask options are available for selection for each pin.

| Pin name | Mask option | | |
| :--- | :--- | :--- | :--- | :--- |
| P40-P43,
 P50-P53 | (1)Pull-up resistor enabled
 (specifiable bit by bit) | (2)Pull-up resistor disabled
 (specifiable bit by bit) | |
| XT1, XT2 | 1 Feedback resistor enabled
 (if a subsystem clock is used) (2)Feedback resistor disabled
 (if a subsystem clock is not used) | | |

3.5 Handling Unused Pins

Table 3-1. Handling Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss.
P01/SCK	Connect to Vss or Vod.
P02/SO/SB0	
P03/SI/SB1	
P10/INT0-P12/INT2	Connect to Vss.
P13/TIO	
P20/PTO0	Input state: Connect to Vss or Vdd. Output state: Open
P21	
P22/PCL	
P23/BUZ	
P30-P33	
P40-P43	
P50-53	
P60/KR0/AN4-P63/KR3/AN7	
P110/AN0-P113/AN3	Connect to Vss or Vdd.
AVref	Connect to Vss.
AVss	
XT1	Connect to Vss or Vdd.
XT2	Open
IC	Directly connect to Vdo.

4. MEMORY CONFIGURATION

- Program memory (ROM) 4096×8 bits (0000H to 0FFFH) : μ PD75064 6016×8 bits $(0000 \mathrm{H}$ to 177 FH$): \mu \mathrm{PD} 75066$
$\ldots . .8064 \times 8$ bits $(0000 \mathrm{H}$ to 1F7FH) : $\mu \mathrm{PD} 75068$
$\cdot 0000 \mathrm{H}$ to $0001 \mathrm{H}:$ Vector table in which the program start address by reset is stored
- 0002 H to $000 \mathrm{BH}:$ Vector table in which the program start address by interrupt is stored
- 0020 H to $007 \mathrm{FH}:$ Table area to be referenced by GETI instruction
- Data memory
- Data area 512×4 bits (000 H to 1 FFH)
- Peripheral hardware area 128×4 bits (F8OH to FFFH)

Figure 4-1. Program Memory Map
(a) μ PD75064

(b) μ PD75066

(c) μ PD75068

Figure 4-2. Data Memory Map

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

The following three types of I / O port are provided:

- CMOS input ports (PORT0, 1, 11)	$: 12$
- CMOS input/output ports (PORT2, 3, 6)	$: 12$
- N-ch open-drain input/output ports (PORT4, 5)	$: 8$
Total	32

Table 5-1. Functions of Port

Port (Symbol)	Function	Operation/features	Remarks
PORTO PORT1	4-bit input	Can be read or tested regardless of the operation mode of the dual function pin.	Shared with the SO/SB0, SI/SB1, $\overline{\text { SCK, }}$ INTO-2, 4, and TIO pins.
PORT3Note PORT6	4-bit I/O	Can be specified for input/ output in bit units.	Port 6 is shared with pins KRO to KR3 and pins AN4 to AN7.
PORT2		Can be specified for input/ output in 4-bit units.	Port 2 is shared with PTO0, PCL, and BUZ pins.
PORT4 ${ }^{\text {Note }}$ PORT5Note	4-bit I/O (N -ch open-drain, can withstand 10 V)	Can be specified for input/ output in 4-bit units. Ports 4 and 5 can be paired to input/output data in 8-bit units.	Whether or not the internal pull-up resistor is provided can be specified for each bit by mask option.
PORT11	4-bit input	4-bit port dedicated to input	Port 11 is shared with pins AN0 to AN3.

Note Can directly drive LEDs.

5.2 Clock Generator

The clock generator operates according to the statuses of the processor clock control register (PCC) and the system clock control register (SCC). Two types of clock are provided: main system clock and subsystem clock, and the instruction execution time can be changed.

- $0.95 \mu \mathrm{~s} / 1.91 \mu \mathrm{~s} / 15.3 \mu \mathrm{~s}$ (operated with main system clock at 4.19 MHz)
- $122 \mu \mathrm{~s}$ (operated with subsystem clock at 32.768 kHz)

Figure 5-1. Clock Generator Block Diagram

Note Instruction execution
Remarks 1. $f x=$ Main system clock frequency
2. $f \times t=$ Subsystem clock frequency
3. $\Phi=\mathrm{CPU}$ clock
4. PCC: Processor clock control register
5. SCC: System clock control register
6. One clock cycle (tcy) at Φ is equal to one machine cycle of an instruction. For tcy, refer to AC Characteristics in 10. ELECTRICAL SPECIFICATIONS.

5.3 Clock Output Circuit

The clock output circuit outputs clock pulses from the P22/PCL pin, and is used to supply clock pulses to remote unit controller and peripheral LSIs.

- Clock output (PCL): $\Phi, 524 \mathrm{kHz}, 262 \mathrm{kHz}, 65.5 \mathrm{kHz}$ ($\mathrm{fx}=$ at 4.19 MHz)

Figure 5-2. Clock Output Circuit Configuration

Remark Measures are taken to prevent outputting a narrow pulse when selecting clock output enable/disable.

5.4 Basic Interval Timer

The basic interval timer has these functions:

- Interval timer operation which generates a reference timer interrupt
- Watchdog timer application which detects a program runaway
- Selection of wait time for releasing the standby mode and counting the wait time
- Reading out the count value

Figure 5-3. Basic Interval Timer Configuration

Note Instruction execution

5.5 Watch Timer

The μ PD75068 has an on-chip 1-ch watch timer. The watch timer has the following functions:

- Sets the test flag (IROW) with a $0.5-\mathrm{sec}$ interval. The standby mode can be released by IRQW.
- The 0.5 -second interval can be generated from either the main system clock or subsystem clock.
- The time interval can be made 128 times faster (3.91 ms) by selecting the fast mode. This is convenient for program debugging, testing, etc.
- Any of the frequencies $2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}$, and 32.768 kHz can be output to the P23/BUZ pin. This can be used for beep and system clock frequency trimming.
- The frequency divider circuit can be cleared so that a zero-second start of the watch can be made.

Figure 5-4. Watch Timer Block Diagram

Remark () is for $\mathrm{fx}_{\mathrm{x}}=4.194304 \mathrm{MHz}, \mathrm{fxT}^{2}=32.768 \mathrm{kHz}$.

5.6 Timer/Event Counter

The μ PD75068 has an on-chip 1-ch timer/event counter. The timer/event counter has the following functions:

- Programmable interval timer operation
- Outputs square-wave signal of a user-selectable frequency to the PTOO pin
- Event counter operation
- Divides the TIO pin input by N and outputs to the PTOO pin (frequency divider operation)
- Supplies serial shift clock to the serial interface circuit
- Count condition read-out function.

Figure 5-5. Block Diagram of Timer / Event Counter

Note Instruction execution

5.7 Serial Interface

(1) Serial interface function

The μ PD75068 contains a clock synchronous 8 -bit serial interface, which has four modes.

- Operation halt mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode
- SBI (serial bus interface mode)

Figure 5-6. Block Diagram of Serial Interface

5.8 A/D Converter

The μ PD75068 contains an 8 -bit analog/digital (A/D) converter that has eight analog input channels (ANO - AN7).

The A/D converter employs the successive-approximation method.

Figure 5-7. Block Diagram of A/D Converter

5.9 Bit Sequential Buffer: 16 Bits

The bit sequential buffer is a data memory specifically provided for bit manipulation. With this buffer, addresses and bit specifications can be sequentially updated by bit manipulation operation. Therefore, this buffer is very useful for processing long data in bit units.

Figure 5-8. Bit Sequential Buffer Format

Remark For "pmem.@L" addressing, the specification bit is shifted according to the L register.

6. INTERRUPT FUNCTIONS

The μ PD75068 has six different interrupt sources. In addition, multiple interrupts with priority control are possible. Two types of test sources are provided. Of these test sources, INT2 has two types of edge detection testable inputs.

Table 6-1. Interruption Source Types

	Interruption Source	IN/OUT	Interruption OrderNote1	Vectored Interrupt Request Signal (Vector table address)
INTBT	(Reference time interval signal from basic interval timer)	IN		
INT4	(Detection of both rising edge and falling edge is valid.)	OUT	1	VRQ1 (0002H)
INTO	(Selection of rising edge detection or	OUT	2	VRQ2 (0004H)
INT1	falling edge detection)	OUT	3	VRQ3 (0006H)
INTCSI	(Serial data transmission completion signal)	IN	4	VRQ4 (0008H)
INTTO	(Coincidence signal of programmable timer/counter count register and modulo register)	IN	5	VRQ5 (000AH)
INT2 ${ }^{\text {Note2 }}$	(Detection of rising edge of input to INT2 pin or detection of falling edge of any input to KRO to KR3)	OUT	Test input signal (Set IRQ and IRQW)	
INTW ${ }^{\text {Note2 }}$	(Signal from watch timer)	IN		

Notes 1. The interruption order shows the priority order of the pins when several interruption requests occur at the same time.
2. Test source. Like the interruption source, it is influenced by the interruption enable flag. However, vectored interrupt will not occur.

The interrupt control circuit of the μ PD75068 has the following functions:

- Hardware controlled vectored interrupt function which can control whether or not to acknowledge an interrupt based on the interrupt flag (IEXXX) and interrupt master enable flag (IME)
- The interrupt start address can be set arbitrarily.
- Interrupt request flag (IRQXXX) test function (an interrupt generation can be confirmed by software)
- Standby mode release (interrupts to be released can be selected by the interrupt enable flag)

Figure 6-1. Block Diagram of Interrupt Control Circuit

7. STANDBY FUNCTION

The μ PD75068 has two different standby modes (STOP mode and HALT mode) to reduce power dissipation while waiting for program execution.

Table 7-1. Standby Mode Statuses

		STOP mode	HALT mode
Instruction for setting		STOP instruction	HALT instruction
System clock for setting		Can be set only when operating on the main system clock.	Can be set either with the main system clock or the subsystem clock.
Operation status	Clock oscillator	Only the main system clock stops its operation.	Only the CPU clock Φ stops its operation (oscillation continues).
	Basic interval timer	Does not operate.	Can operate only at main system clock oscillation (IRQBT is set at reference time intervals.).
	Serial interface	Can operate only when the external $\overline{\text { SCK }}$ input is selected for the serial clock.	Can operate only when external $\overline{\text { SCK }}$ input is selected as the serial clock or at main system clock oscillation.
	Timer/event counter	Can operate only when the TIO pin input is selected for the count clock.	Can operate only when TIO pin input is specified as the count clock or at main system clock oscillation.
	Watch timer	Can operate when f_{x} is selected as the count clock.	Can operate.
	A/D converter	Does not operate.	Can operate. ${ }^{\text {Note }}$
	External interrupt	INT1, INT2, and INT4 can operate. Only INTO cannot operate.	
	CPU	Does not operate.	
Release signal		An interrupt request signal from hardware whose operation is enabled by the interrupt enable flag or the $\overline{\text { RESET }}$ signal input	An interrupt request signal from hardware whose operation is enabled by the interrupt enable flag or the RESET signal input

Note A/D converter's operation in HALT mode is possible only when the main system clock operates.

8. RESET OPERATION

When the RESET signal is input, the μ PD75068 is reset and all hardware is initialized as indicated in Table $8-1$. Figure $8-1$ shows the reset operation timing.

Figure 8-1. Reset Operation by RESET Input

Table 8-1. Status of All Hardware after Reset (1/2)

Hardware				$\overline{\text { RESET }}$ input in standby mode	$\overline{\text { RESET }}$ input during operation
Program counter (PC)			μ PD75064	Contents of lower 4 bits of address 0000 H in program memory are set to PC11-8, and that of 0001H are set to PC7-0.	Same operation as that in standby state
			μ PD75066 μ PD75068	Contents of lower 5 bits of address 0000 H in program memory are set to PC12-8, and that of 0001 H are set to PC7-0.	Same operation as that in standby state
PSW	Carry flag (CY)			Retained	Undefined
	Skip flag (SK0-2)			0	0
	Interrupt status flag (ISTO)			0	0
	Bank enable flag (MBE)			The contents of bit 7 of address 0000 H of the program memory is set to MBE.	Same operation as that in standby state
Stack pointer (SP)				Undefined	Undefined
Data memory (RAM)				Retained ${ }^{\text {Note }}$	Undefined
General purpose register (X, A, H, L, D, E, B, C)				Retained	Undefined
Bank selection register (MBS)				0	0
Basic interval timer		Counter (BT)		Undefined	Undefined
		Mode register (BTM)		0	0
Timer/event counter		Counter (TO)		0	0
		Modulo register (TMODO)		FFH	FFH
		Mode register (TM0)		0	0
		TOEO, TOUT F/F		0, 0	0, 0
Watch timer		Mode register (WM)		0	0

Note Data of address OF8H to OFDH of the data memory becomes undefined when the $\overline{\text { RESET }}$ signal is input.

Table 8-1. Status of All Hardware after Reset (2/2)

Hardware			$\overline{\mathrm{RESET}}$ input in standby mode	$\overline{\mathrm{RESET}}$ input during operation
Serial interface	Shift register (SIO)		Retained	Undefined
	Operation mode register (CSIM)		0	0
	SBI control register (SBIC)		0	0
	Slave address register (SVA)		Retained	Undefined
Clock generator, Clock output circuit	Processor clock control register (PCC)		0	0
	System clock control register (SCC)		0	0
	Clock output mode register (CLOM)		0	0
Interrupt function	Interrupt request flag (IROxxx)	IRQ1, IRQ2, and IRQ4	Undefined	Undefined
		Other than above	0	0
	Interrupt enable flag (IExxx)		0	0
	Interrupt master enable flag (IME)		0	0
	INTO, 1, 2, mode register (IM0, IM1, IM2)		0, 0, 0	0, 0, 0
Digital port	Output buffer		Off	Off
	Output latch		Clear (0)	Clear (0)
	Input/output mode register (PMGA, PMGB)		0	0
	Pull-up resistor specification register (POGA)		0	0
A/D converter	Mode register (ADM)		04H	04H
	SA register (SA)		Undefined	Undefined
Bit sequential buffer (BSB0-BSB3)			Retained	Undefined

9. INSTRUCTION SET

(1) Operand identifier and its descriptive method

The operands are described in the operand column of each instruction according to the descriptive method for the operand format of the appropriate instructions. Details should be followed by "RA75X Assembler Package User's Manual, Language." For descriptions in which alternatives exist, one element should be selected. Capital letters and plus and minus signs are keywords; therefore, they should be described as they are.
For immediate data, the appropriate numerical values or labels should be described.

Identifier	Description		
reg reg1	X, A, B, C, D, E, H, L X, B, C, D, E, H, L		
rp rp1 rp2	XA, BC, DE, HL BC, DE, HL BC, DE		
rpa rpa1	HL, DE, DL DE, DL		
n4 n8	4-bit immediate data or label 8-bit immediate data or label		
mem			
bit		\quad	8-bit immediate data or label
:---			
2-bit immediate data or label			

Note Only even address can be specified for mem when processing 8-bit data.
(2) Symbol definitions in operation description

A : A register; 4-bit accumulator
B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register
XA : Pair register (XA); 8-bit accumulator
$B C \quad: \quad$ Pair register (BC)
DE : Pair register (DE)

HL	Pair register (HL)
PC	Program counter
SP	Stack pointer
CY	Carry flag; Bit accumulator
PSW	Program status word
MBE	Memory bank enable flag
PORTn	Port n ($\mathrm{n}=0$ to 6, 11)
IME	: Interrupt master enable flag
IEXXX	Interrupt enable flag
MBS	Memory bank selection register
PCC	Processor clock control register
	Address bit delimiter
($x \times$)	Contents addressed by $\times \times$
$x \times H$	Hexadecimal data

(3) Symbols used for the addressing area column

*1	$\begin{aligned} & \mathrm{MB}=\mathrm{MBE} \cdot \mathrm{MBS} \\ & (\mathrm{MBS}=0,1,15) \end{aligned}$
*2	$\mathrm{MB}=0$
*3	$\begin{aligned} & \mathrm{MBE}=0: \mathrm{MB}=0(00 \mathrm{H}-7 \mathrm{FH}) \\ & M B=15(80 \mathrm{H}-\mathrm{FFH}) \\ & \mathrm{MBE}=1: \mathrm{MB}=\mathrm{MBS}(\mathrm{MBS}=0,1,15) \end{aligned}$
*4	$\begin{aligned} \mathrm{MB}=15, \text { fmem }= & \mathrm{FBOH}-\mathrm{FBFH}, \\ & \text { FFOH }-\mathrm{FFFH} \end{aligned}$
*5	$\mathrm{MB}=15, \mathrm{pmem}=\mathrm{FCOH}-\mathrm{FFFH}$
* 6	μ PD75064 addr $=0000 \mathrm{H}-0$ FFFH
	μ PD75066 addr $=0000 \mathrm{H}-177 \mathrm{FH}$
	μ PD75068 addr $=0000 \mathrm{H}-1 \mathrm{~F} 7 \mathrm{FH}$
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$
*8	μ PD75064 caddr $=0000 \mathrm{H}-$ OFFFH
	μ PD75066 caddr $=$ $0000 \mathrm{H}-0$ FFFH $(\mathrm{PC} \quad 12=0)$ or $=1000 \mathrm{H}-177 \mathrm{FH}\left(\mathrm{PC}_{12}=1\right)$
	μ PD75068 caddr $=$ $0000 \mathrm{H}-0$ FFFH $(\mathrm{PC} \quad 12=0)$ or $=1000 \mathrm{H}-1 \mathrm{~F} 7 \mathrm{FH}\left(\mathrm{PC}_{12}=1\right)$
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$
* 10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$

Program memory addressing

Remarks 1. MB indicates the memory bank that can be accessed.
2. For *2, $M B=0$ regardless of MBE and MBS settings.
3. For ${ }^{*} 4$ and ${ }^{*} 5, M B=15$ regardless of MBE and MBS.
4. For ${ }^{*} 6$ to ${ }^{*} 10$, each addressable area is indicated.
(4) Description of machine cycle column

S indicates the number of machine cycles necessary for skipping any skip instruction. The value of S changes as follows:

- When no skip is performed
$S=0$
- When a 1-byte or 2-byte instruction is skipped ...S $=1$
- When a 3-byte instruction (BR !addr Note , CALL !addr instruction) is skipped S = 2

Note BR !addr instruction is not provided in the μ PD75064.

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equivalent to one CPU clock Φ cycle. Therefore, the length of the machine cycle can be selected from three different lengths by the PCC setting.
(5) Representative products listed in operation column

The products listed in the operation column (μ PD75064, 75066,75068) stand for the products listed below.

μ PD75064	μ PD75064, μ PD75064(A)
μ PD75066	μ PD75066, μ PD75066(A)
μ PD75068	μ PD75068, μ PD75068(A)

Group	Mnemonic	Operand	Bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @rpa1	1	1	$A \leftarrow(\mathrm{rpa} 1)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@ HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@ HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$A \leftarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$\mathrm{XA} \leftarrow(\mathrm{mem})$	*3	
		mem, A	2	2	$($ mem $) \leftarrow A$	*3	
		mem, XA	2	2	$(\mathrm{mem}) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$\mathrm{A} \leftarrow \mathrm{reg}$		
		XA, rp	2	2	$\mathrm{XA} \leftarrow \mathrm{rp}$		
		reg1, A	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{~A}$		
		rp1, XA	2	2	$\mathrm{rp} 1 \leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	$A \leftrightarrow(H L)$	*1	
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow(\mathrm{rpa} 1)$	*2	
		XA, @ HL	2	2	$\mathrm{XA} \leftrightarrow(\mathrm{HL})$	*1	
		A, mem	2	2	$A \leftrightarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	XA \leftrightarrow (mem)	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp	2	2	$\mathrm{XA} \leftrightarrow \mathrm{rp}$		
Table reference	MOVT	XA, @PCDE	1	3	- μ PD75064 $\mathrm{XA} \leftarrow\left(\mathrm{PC}_{11-8}+\mathrm{DE}\right)_{\text {вом }}$ - μ PD75066, 75068 $\mathrm{XA} \leftarrow\left(\mathrm{PC}_{12-8}+\mathrm{DE}\right)_{\text {вом }}$		
		XA, @PCXA	1	3	- μ PD75064 $X A \leftarrow\left(\mathrm{PC}_{11-8}+\mathrm{XA}\right)_{\text {rом }}$ - μ PD75066, 75068 $\mathrm{XA} \leftarrow\left(\mathrm{PC}_{12-8}+\mathrm{XA}\right)_{\text {rом }}$		
Arithmetic	ADDS	A, \#n4	1	$1+\mathrm{S}$	$A \leftarrow A+n 4$		carry
		A, @HL	1	$1+\mathrm{S}$	$A \leftarrow A+(H L)$	*1	carry
	ADDC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	*1	
	SUBS	A, @HL	1	$1+\mathrm{S}$	$A \leftarrow A-(H L)$	*1	borrow
	SUBC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	

Group	Mnemonic	Operand	Bytes	Machine cycle	Operation	Addressing area	Skip condition
Arithmetic	AND	A, \#n4	2	2	$A \leftarrow A \wedge n 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	* 1	
	OR	A, \#n4	2	2	$\mathrm{A} \leftarrow \mathrm{A} \vee \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \vee(H L)$	*1	
	XOR	A, \#n4	2	2	$A \leftarrow A \forall \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
Accumulator manipulation	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \quad \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \quad \mathrm{A}_{n-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		
Increment/ decrement	INCS	reg	1	$1+\mathrm{S}$	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		@HL	2	$2+S$	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	* 1	$(\mathrm{HL})=0$
		mem	2	$2+S$	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	$1+S$	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
Comparison	SKE	reg, \#n4	2	$2+S$	Skip if reg = n 4		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	$2+S$	Skip if (HL) $=\mathrm{n} 4$	* 1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	$1+S$	Skip if $A=(H L)$	* 1	$A=(H L)$
		A, reg	2	$2+S$	Skip if $A=r e g$		$A=r e g$
Carry flag manipu- lation	SET1	CY	1	1	$C Y \leftarrow 1$		
	CLR1	CY	1	1	$C Y \leftarrow 0$		
	SKT	CY	1	$1+\mathrm{S}$	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \mathrm{CY}$		
Memory bit manipulation	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem.bit) $\leftarrow 1$	* 4	
		pmem.@L	2	2	$\left(\right.$ pmem7-2 $\left.+L_{3-2 . b i t}\left(L_{1-0}\right)\right) \leftarrow 1$	* 5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3}$-0.bit $) \leftarrow 1$	* 1	
	CLR1	mem.bit	2	2	(mem. bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem.bit) $\leftarrow 0$	* 4	
		pmem.@L	2	2	$\left(\right.$ pmem7-2 $\left.\left.+\mathrm{L}_{3-2} . \mathrm{bit}^{\text {(}} \mathrm{L}_{1-0}\right)\right) \leftarrow 0$	* 5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3}$-0.bit $) \leftarrow 0$	* 1	
	SKT	mem.bit	2	$2+S$	Skip if (mem.bit) $=1$	*3	(mem.bit) = 1
		fmem.bit	2	$2+S$	Skip if (fmem.bit) $=1$	* 4	(fmem.bit) $=1$
		pmem.@L	2	$2+S$	Skip if (pmem7-2 $\left.+L_{3-2 . \operatorname{bit}}\left(L_{1-0}\right)\right)=1$	* 5	(pmem.@L) = 1
		@H+mem.bit	2	$2+S$	Skip if (H + mem3-o.bit $)=1$	*1	$(@ H+$ mem.bit $)=1$
	SKF	mem.bit	2	$2+S$	Skip if (mem.bit) $=0$	*3	(mem.bit) $=0$
		fmem.bit	2	$2+S$	Skip if (fmem. bit) $=0$	* 4	(fmem.bit) $=0$
		pmem.@L	2	$2+S$	Skip if (pmem7-2 $+\mathrm{L}_{3-2 . \mathrm{bit}}\left(\mathrm{L}_{1-0}\right)$) $=0$	* 5	(pmem.@L) = 0
		@H+mem.bit	2	$2+S$	Skip if ($\mathrm{H}+$ mem $_{3-\text { - }}$.bit $)=0$	* 1	$(@ H+$ mem.bit $)=0$
	SKTCLR	fmem.bit	2	$2+S$	Skip if (fmem.bit) $=1$ and clear	* 4	(fmem.bit) $=1$
		pmem.@L	2	$2+S$		* 5	(pmem.@L) = 1
		@H+mem.bit	2	$2+S$	Skip if ($\mathrm{H}+$ mem $_{3-0 . \mathrm{bit}}$) $=1$ and clear	* 1	$(@ H+$ mem.bit $)=1$

Group	Mnemonic	Operand	Bytes	Machine cycle	Operation	Addressing area	Skip condition
Memory bit manipulation	AND1	CY, fmem.bit	2	2	$C Y \leftarrow C Y \wedge$ (fmem.bit)	* 4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem7-2 $+\mathrm{L}_{\left.3-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $_{3 \text {-0. }{ }^{\text {bit }} \text {) }}$	*1	
	OR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem.bit)	* 4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\mathrm{pmem} 7-2+\mathrm{L}_{\left.3-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}\right.$	* 5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ ($\mathrm{H}+$ mem3-0.bit)	*1	
	XOR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (fmem.bit)	* 4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\right.$ pmem7-2 $\left.+\mathrm{L}_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right)$	* 5	
		CY, @H+mem.bit	2	2	$C Y \leftarrow C Y \forall\left(H+\right.$ mem $\left._{3-0 . \mathrm{bit}}\right)$	*1	
Branch	BR	addr	-	-	- μ PD75064 $\mathrm{PC}_{11-0} \leftarrow$ addr (Appropriate instructions are selected from BRCB !caddr, and BR \$addr by the assembler.) - μ PD75066, 75068 $\mathrm{PC}_{12-0} \leftarrow$ addr (Appropriate instructions are selected from BR !addr, BRCB !caddr, and BR \$addr by the assembler.)	*6	
		!addr Note	3	3	- μ PD75066, 75068 $\mathrm{PC}_{12-0} \leftarrow$ addr	* 6	
		\$addr	1	2	- μ PD75064 $\mathrm{PC}_{11-0} \leftarrow$ addr - μ PD75066, 75068 $\mathrm{PC}_{12-0} \leftarrow$ addr	*7	
	BRCB	!caddr	2	2	- μ PD75064 $\mathrm{PC}_{11-0} \leftarrow$ caddr $_{11-0}$ - μ PD75066, 75068 $\mathrm{PC}_{12-0} \leftarrow \mathrm{PC}_{12}+\text { caddr }_{11-0}$	*8	
Subroutine stack control	CALL	!addr	3	3	- μ PD75064 $\begin{aligned} & (S P-4)(S P-1)(S P-2) \leftarrow P_{11-0} \\ & (S P-3) \leftarrow M B E, 0,0,0 \\ & P_{11-0} \leftarrow \operatorname{addr}, S P \leftarrow S P-4 \end{aligned}$ - μ PD75066, 75068 $\begin{aligned} & (S P-4)(S P-1)(S P-2) \leftarrow P_{11-0} \\ & (S P-3) \leftarrow M B E, 0,0, P_{12} \\ & \mathrm{PC}_{12-0} \leftarrow a d d r, S P \leftarrow S P-4 \end{aligned}$	* 6	

Note BR !addr instruction is not provided in the μ PD75064.

Group	Mnemonic	Operand	Bytes	Machine cycle	Operation	Addressing area	Skip condition
Interrupt control	El		2	2	$\mathrm{IME} \leftarrow 1$		
		IExxx	2	2	IExxx $\leftarrow 1$		
	DI		2	2	$\mathrm{IME} \leftarrow 0$		
		IExxx	2	2	$\mathrm{IExxx} \leftarrow 0$		
Input/ output	IN	A, PORTn	2	2	$\mathrm{A} \leftarrow$ PORTn $\quad(\mathrm{n}=0-6,11)$		
		XA, PORTn	2	2	$\mathrm{XA} \leftarrow \mathrm{PORT}+1, \mathrm{PORTn} \quad(\mathrm{n}=4,6)$		
	OUT	PORTn, A	2	2	PORTn $\leftarrow \mathrm{A} \quad(\mathrm{n}=2-6)$		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow XA $(\mathrm{n}=4,6)$		
CPU control	HALT		2	2	Set HALT Mode $\quad($ PCC. $2 \leftarrow 1)$		
	STOP		2	2	Set STOP Mode $\quad($ PCC. $3 \leftarrow 1)$		
	NOP		1	1	No Operation		
Special	SEL	MBn	2	2	MBS $\leftarrow \mathrm{n}(\mathrm{n}=0,1,15)$		
	GETI	taddr	1	3	- μ PD75064 - For the TBR instruction $\mathrm{PC}_{11-0} \leftarrow(\text { taddr })_{3-0}+($ taddr +1$)$ - For the TCALL instruction $\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0,0,0 \\ & \mathrm{PC}_{11-0} \leftarrow(\text { taddr }) 3-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	* 10	
					- For other than the TBR and TCALL instruction (taddr) (taddr +1) is executed.		Depends on the reference instruction.
					- μ PD75066, 75068 - For the TBR instruction $\mathrm{PC}_{12-0} \leftarrow(\operatorname{taddr})_{4-0}+(\text { taddr }+1)$ - For the TCALL instruction $\begin{aligned} & (S P-4)(S P-1)(S P-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, 0,0, \mathrm{PC}_{12} \\ & \mathrm{PC}_{12-0} \leftarrow(\text { taddr } 4-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$		
					- For other than the TBR and TCALL instruction (taddr) (taddr +1) is executed.		Depends on the reference instruction.

Caution When executing the IN/OUT instruction, MBE must be set to 0 , or MBE and MBS must be set to 1 and 15, respectively.

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Ratings	Unit
Power supply voltage	Vod			-0.3 to +7.0	V
Input voltage	V_{11}	Except ports 4 and 5		-0.3 to $\mathrm{VDD}+0.3$	V
	V12	Ports 4 and 5	On-chip pull-up resistor	-0.3 to VDD +0.3	V
			N-ch open-drain	-0.3 to +11	V
Output voltage	Vo			-0.3 to V DD +0.3	V
High level output current	Іон	Per pin		-10	mA
		All output pins		-30	mA
Low level output current	IoL ${ }^{\text {Note }}$	One pin of ports $0,3,4$, and 5	Peak value	30	mA
			rms value	15	mA
		One pin of ports 2 and 6	Peak value	20	mA
			rms value	5	mA
		Total of ports 0, 3, 4 and 5	Peak value	160	mA
			rms value	120	mA
		Total of ports 2 and 6	Peak value	30	mA
			rms value	20	mA
Operating ambient temperature	Topt			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Note $R m s$ value is calculated using the following expression: [rms value] $=[$ [peak value] $\times \sqrt{\text { duty ratio }}$

Caution If any of the items exceeds the absolute maximum ratings, even momentarily, this may damage product quality. The absolute maximum ratings are values that may physically damage products. Be sure to use the products within the ratings.

Main System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 7}$ to 6.0 V)

| Resonator |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ceramic
 resonator
 Constant |

Notes 1. The oscillation frequency indicates characteristics of the oscillator only. For the instruction execution time, refer to the AC characteristics.
2. The oscillation stabilization time is the required time for oscillation to stabilize after the voltage level of VDD reaches the MIN. value of the oscillation voltage range or releasing the STOP mode.
3. When the oscillation frequency is " $4.19 \mathrm{MHz}<\mathrm{fx} \leq 5.0 \mathrm{MHz}$ ", selection of "PCC $=0011$ " with 1 machine cycle of less than 0.95μ sor instruction execution time is not possible.

Caution If the main system clock oscillator is used, the wiring in the area indicated with broken lines in the recommended constant illustration should be routed observing the points described below to avoid influence of wiring capacitance, etc.

- Route as short as possible.
- Do not cross the wires.
- Route the wires away from lines where changing high current flows.
- Make the connecting point of the capacitors in the oscillation circuit to have always the same potential as Vss. Do not route the connecting point to another ground pattern on the board where high current flows.
- Do not use the oscillator as a signal source of other circuits.

Subsystem Clock Oscillator Characteristics ($\mathrm{Ta}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 6.0 V)

Notes 1. The oscillation frequency indicates characteristics of the oscillator only. For the instruction execution time, refer to the AC characteristics.
2. The oscillation stabilization time is the required time for oscillation to stabilize after the voltage level of $V_{D D}$ reaches the MIN. value of the oscillation voltage range.

Caution If the subsystem clock oscillator is used, the wiring in the area indicated with broken lines in the recommended constant illustration should be routed observing the points described below to avoid influence of wiring capacitance, etc.

- Route as short as possible.
- Do not cross the wires.
- Route the wires away from lines where changing high current flows.
- Make the connecting point of the capacitors in the oscillation circuit to have always the same potential as Vss. Do not route the connecting point to another ground pattern on the board where high current flows.
- Do not use the oscillator as a signal source of other circuits.

Especially when using the subsystem clock, be sure to design wiring so as to minimize noise. The subsystem clock oscillator uses a low-amplification circuit to minimize power dissipation. As a result, malfunctions due to noise are more liable to occur than with the main system clock oscillator.

Recommended Oscillator Constant

Main system clock: Ceramic ($\mathrm{Ta}_{\mathrm{a}} \mathbf{= - 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Manufacturer	Part number	Frequency (MHz)	Recommended circuit constant		Oscillation voltage range		Remarks
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
KYOCERA	KBR-2.0 MS	2.00	47	47	2.5	6.0	
	PBRC 2.00A						
	KBR-4.19 MSA	4.19	33	33	2.7		
	PBRC 4.19A						
	KBR-4.19 MKS	4.19	Internal	Internal			
	KBR-4.19 MWS						
MURATA Manufacturing	CSB1000JNote	1.00	100	100	2.7	6.0	$\mathrm{Rd}=5.6 \mathrm{k} \Omega$
	CSA2.0MG040	2.00	100	100	2.8		
	CST2.0MGW093		Internal	Internal	2.7		
	CSAC2.0MGCME		15	15			Chip product
	CSA4.19MGU	4.19	30	30			
	CST4.19MGUW		Internal	Internal			

Note When the Murata's CSB1000J ceramic resonator (1.00 MHz) is used, the limiting resistor ($\mathrm{Rd}=5.6 \mathrm{k} \Omega$) is required (see figure below). When using other recommended resonators, the limiting resistor is not required.

Example of Recommended Main System Clock Circuit (when using CSB1000J of Murata)

Main System Clock: XTAL

Manufacturer	Part number	Frequency (MHz)	Recommended circuit constant		Oscillation voltage range		Remarks
			C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
DAISINKU	HC-49/U	2.00	8	8	2.8	6.0	$\left(\mathrm{T}_{\mathrm{a}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
		4.19			2.7		
		5.00					
KINSEKI	HC-49/U	2.00	22	22	3.1	6.0	$\left(\mathrm{T}_{\mathrm{a}}=-20\right.$ to $+70^{\circ} \mathrm{C}$)
		4.19			3.2		

DC Characteristics ($\mathrm{Ta}_{\mathrm{a}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 7}$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{1+1}	Ports 2, 3, and 11		0.7 VdD		VDD	V
	$\mathrm{V}_{1}{ }^{2}$	Ports 0,1,6, $\overline{\text { RESET }}$		0.8 VdD		VDD	V
	Vінз	Ports 4 and 5	On-chip pull-up resistor	0.7 VdD		VDD	V
			N-ch open-drain	0.7 VDD		10	V
	$\mathrm{V}_{1 \mathrm{H} 4}$	X1, X2, XT1, XT2		VDD -0.5		VDD	V
Low-level input voltage	VIL1	Ports 2 through 5 and 11		0		0.3 VDD	V
	VIL2	Ports 0, 1, 6, $\overline{\text { RESET }}$		0		0.2 VDD	V
	VIL3	X1, X2, XT1, XT2		0		0.4	V
High-level output voltage	Voн	$\mathrm{V} \mathrm{DD}=4.5$ to $6.0 \mathrm{~V}, \mathrm{loH}=-1 \mathrm{~mA}$		VDD -1.0			V
		$\mathrm{IOH}=-100 \mu \mathrm{~A}$		VDD -0.5			V
Low-level output voltage	VoL	Ports 4 and 5	$\begin{aligned} & \mathrm{V} D \mathrm{DD}=4.5 \mathrm{to} 6.0 \mathrm{~V} \\ & \mathrm{IoL}=15 \mathrm{~mA} \end{aligned}$		0.7	2.0	V
		Port 3	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 6.0 \mathrm{~V} \\ & \mathrm{IoL}=15 \mathrm{~mA} \end{aligned}$		0.3	2.0	V
		$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V ,	$=1.6 \mathrm{~mA}$			0.4	V
		loL $=400 \mu \mathrm{~A}$				0.5	V
		SB0, SB1	N -ch open-drain pull-up resistor $\geq 1 \mathrm{k} \Omega$			0.2 VDD	V
High-level input leakage current	Іıн1	$V_{1}=V_{D D}$	Other than pins below			3	$\mu \mathrm{A}$
	ІІн2		X1, X2, XT1, XT2			20	$\mu \mathrm{A}$
	ІІнз	$\mathrm{V}_{1}=10 \mathrm{~V}$	Ports 4 and 5 (N -ch open-drain)			20	$\mu \mathrm{A}$
Low-level input leakage current	İı1	$\mathrm{V}_{1}=0 \mathrm{~V}$	Other than pins below			-3	$\mu \mathrm{A}$
	ILIL2		X1, X2, XT1, XT2			-20	$\mu \mathrm{A}$
High-level output leakage current	ILOH1	V O $=\mathrm{V}_{\mathrm{DD}}$				3	$\mu \mathrm{A}$
	ILoH2	V o $=10 \mathrm{~V}$	Ports 4 and 5 (N-ch open-drain)			20	$\mu \mathrm{A}$
Low-level output leakage current	ILoL	V o $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
On-chip pull-up resistor	Ru1	$\begin{aligned} & \text { P01, 02, 03, } \\ & \text { Ports 1, 2, } 3 \text { and } 6 \\ & V_{1}=0 \mathrm{~V} \end{aligned}$	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$	15	40	80	k Ω
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	30		300	$\mathrm{k} \Omega$
	Ru2	Ports 4 and 5$V_{0}=V_{D D}-2.0 \mathrm{~V}$	$\mathrm{V} D=5.0 \mathrm{~V} \pm 10 \%$	15	40	70	$\mathrm{k} \Omega$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$	10		60	k Ω

(Cont.)

DC Characteristics ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.7$ to 6.0 V)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note1 }}$	Idol	4.19 MHz Note2 crystal oscillation $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$V_{D D}=5.0 \mathrm{~V} \pm 10$ \% Note3				2.0	6.0	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note }}{ }^{4}$				0.2	0.6	mA
	IdD2		HALT mode	VDD	$5.0 \mathrm{~V} \pm 10$ \%		400	1200	$\mu \mathrm{A}$
				Vdo	$3.0 \mathrm{~V} \pm 10 \%$		120	400	$\mu \mathrm{A}$
	IdD3	32.768 kHz Note5 crystal oscillation	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$				10	30	$\mu \mathrm{A}$
	IdD4		HALT mode	$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$			5	15	$\mu \mathrm{A}$
	Idos	$\begin{aligned} & \text { XT1 = } 0 \mathrm{~V} \\ & \text { STOP mode } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$				0.5	20	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{VDD}= \\ & 3.0 \mathrm{~V} \pm 10 \% \end{aligned}$				0.1	10	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$		0.1	5	$\mu \mathrm{A}$

Notes 1. Current which flows in the on-chip pull-up resistor is not included.
2. Including oscillation of the subsystem clock.
3. When the processor clock control register (PCC) is set to 0011 and the device is operated in the highspeed mode.
4. When PCC is set to 0000 and the device is operated in the low-speed mode.
5. When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem clock, with main system clock oscillation stopped.

Capacitance ($\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{VDD}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			15	pF
Output capacitance	Co				15	pF
I/O capacitance	Cıo				15	pF

AC Characteristics ($\mathrm{Ta}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=\mathbf{2 . 7}$ to $\mathbf{6 . 0} \mathrm{V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note1 (minimum instruction execution time $=$ 1 machine cycle)	tcy	Operating on main system clock	$V_{D D}=4.5$ to 6.0 V	0.95		64	$\mu \mathrm{s}$
				3.8		64	$\mu \mathrm{s}$
		Operating on subsystem clock		114	122	125	$\mu \mathrm{s}$
TIO input frequency	ftif	$\mathrm{V} \mathrm{DD}=4.5$ to 6.0 V		0		1	MHz
				0		275	kHz
TIO input high and low level width	tтін,tTIL	$V_{D D}=4.5$ to 6.0 V		0.48			$\mu \mathrm{s}$
				1.8			$\mu \mathrm{s}$
Interrupt input high and low level width	tinth, tintl	INTO		Note2			$\mu \mathrm{s}$
		INT1, INT2, INT4		10			$\mu \mathrm{s}$
		KR0 to KR3		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low level width	$t_{\text {RSL }}$			10			$\mu \mathrm{s}$

Notes 1. The cycle time (minimum instruction execution time) of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator, the system clock control register (SCC), and the processor clock control register (PCC). The figure at the right indicates the cycle time tor versus supply voltage VDD characteristic with the main system clock operating.
2. 2 tcy or $128 / \mathrm{fx}$ is set by setting the interrupt mode register (IMO).
tcy vs Vdo
(Operating on Main System Clock)

Serial Transfer Operation

2-Wire and 3-Wire Serial I/O Modes (SCK ... Internal clock output)

2-Wire and 3-Wire Serial I/O Modes ($\overline{\text { SCK }}$... External clock input)

Note RL and CL are load resistance and load capacitance of the SO output line, respectively.

SBI Mode (SCK ... Internal clock output (Master))

SBI Mode ($\overline{\text { SCK }}$... External clock input (Slave))

Note RL and CL are load resistance and load capacitance, respectively, for the SB0 and SB1 output lines.

A/D Converter ($\mathrm{T}_{\mathrm{a}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.7$ to $\mathbf{6 . 0} \mathrm{V}, \mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Absolute accuracy Note1		$2.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{V}_{\mathrm{DD}}{ }^{\text {Note2 }}$	$-10 \leq \mathrm{Ta}_{\mathrm{a}} \leq+8{ }^{\circ} \mathrm{C}$			± 1.5	LSB
			$-40 \leq \mathrm{Ta}_{\mathrm{a}}<-10^{\circ} \mathrm{C}$			± 2.0	LSB
Conversion time ${ }^{\text {Note3 }}$	tconv					168/fx	$\mu \mathrm{s}$
Sampling time ${ }^{\text {Note4 }}$	tsamp					44/fx	$\mu \mathrm{s}$
Reference input voltage	AVref			2.5		VDD	V
Analog input voltage	VIan			AVss		AVref	V
Analog input impedance	Ran				1000		$\mathrm{M} \Omega$
AVref current	Alref				0.7	2.0	mA

Notes 1. Absolute accuracy excluding quantization error ($\pm 1 / 2$ LSB)
2. ADM1 should be set according to the A / D converter reference voltage ($A V_{\text {ref }}$) as follows: When the $A V_{\text {ref }}$ is between 0.6 VdD and 0.65 V do either 1 or 0 can be set.

3. The time from conversion start instruction execution to conversion end (EOC=1) (40.1 $\mu \mathrm{s}$: at $\mathrm{fx}=4.19$ MHz)
4. The time from conversion start instruction execution to sampling end ($10.5 \mu \mathrm{~s}$: at $\mathrm{fx}=4.19 \mathrm{MHz}$)

AC Timing Test Points (excluding X1 and XT1 inputs):

Clock Timings:

TIO Timings:

TIO

Serial Transfer Timing

3-wire serial I/O mode:

2-wire serial I/O mode:

Serial Transfer Timing

Bus release signal transfer:

Command signal transfer:

Interrupt Input Timing

RESET Input Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{Ta}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Voddr		2.0		6.0	V
Data retention supply current Note ${ }^{1}$	IdDDR	VDDDR $=2.0 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Release signal setting time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time Note2	twalt	Release by $\overline{\text { RESET }}$		$2^{17} / f x$		ms
		Release by interrupt request		Note3		ms

Notes 1. Current which flows in the on-chip pull-up resistor is not included.
2. The oscillation stabilization wait time is the time during which the CPU operation is stopped to prevent unstable operation at the oscillation start.
3. Depends on the basic interval timer mode register (BTM) settings (See the table below).

BTM3	BTM2	BTM1	BTM0	(Figures in parentheses are for operation at $\mathrm{fx}=4.19 \mathrm{MHz}$)
-	0	0	0	$2^{20} / \mathrm{fx}$ (approx. 250 ms)
-	0	1	1	$2^{17} / \mathrm{fx}$ (approx. 31.3 ms)
-	1	0	1	$2^{15} / \mathrm{fx}$ (approx. 7.82 ms)
-	1	1	$2^{13} / \mathrm{fx}$ (approx. 1.95 ms)	

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)

11. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)

Idd vs Vdd (Main system clock: 4.19-MHz crystal resonator)

IdD vs VdD (Main system clock: $\quad 2.0-\mathrm{MHz}$ crystal resonator)

Іон vs Vон

12. PACKAGE DRAWINGS

42PIN PLASTIC SHRINK DIP (600 mil)

NOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	39.13 MAX.	1.541 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.004}^{+0.004}$
F	0.9 MIN.	0.035 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
M	$0.25{ }_{-0.05}^{+0.05}$	$0.010_{-0.004}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P42C-70-600A-1

$\star \quad$ Remark The outline dimensions and materials of ES versions are the same as for mass-produced versions.

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	P44GB-80-3B4-2
ANCHES		
B	13.6 ± 0.4	$0.535_{-0.016}^{+0.017}$
C	10.0 ± 0.2	$0.394_{-0.009}^{+0.008}$
D	10.0 ± 0.2	$0.394_{-0.009}^{+0.008}$
F	1.0	$0.535_{-0.016}^{+0.017}$
G	1.0	0.039
H	0.35 ± 0.10	0.039
I	0.15	$0.014_{-0.005}^{+0.004}$
J	0.8 (T.P.)	0.006
K	1.8 ± 0.2	0.031 (T.P.)
L	0.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
M	$0.15_{-0.05}^{+0.10}$	$0.031_{-0.008}^{+0.009}$
N	0.12	$0.006_{-0.003}^{+0.004}$
P	2.7	0.005
Q	0.1 ± 0.1	0.106
S	3.0 MAX.	0.004 ± 0.004

Remark The outline dimensions and materials of ES versions are the same as for mass-produced versions.

13. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD75064, 75066,75068 under the soldering conditions indicated below.
For further information on the recommended soldering conditions, refer to information document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (IEI-1207)".

For soldering methods and conditions other than those of recommended, consult NEC.

Table 13-1. Soldering Conditions for Surface Mounting Devices
μ PD75064GB- $\times \times x-3 B 4$: 44-pin plastic QFP (10 x 10 mm)
μ PD75066GB- $\times \times \times-3 B 4$: 44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)
μ PD75068GB- $\times \times \times-3 B 4$: 44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)
μ PD75064GB(A)- $\times \times \times-3$ B4 : 44-pin plastic QFP ($10 \times 10 \mathrm{~mm}$)
μ PD75066GB(A)- $\times x \times-3 B 4$: 44-pin plastic QFP (10 x 10 mm)
μ PD75068GB(A)- $x \times x-3 B 4$: 44-pin plastic QFP (10 x 10 mm)

Soldering method	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface : $235^{\circ} \mathrm{C}$, Time : 30 seconds max. ($210^{\circ} \mathrm{C}$ min.), Number of reflow processes : 2 or less <Note> (1) Start second reflow after the device temperature, which rose because of the first reflow, has dropped to the normal level. (2) Do not clean the flux with water after the first reflow.	IR35-00-2
VPS	Peak temperature of package surface : $215^{\circ} \mathrm{C}$, Time : 40 seconds max. ($200^{\circ} \mathrm{C}$ min.), Number of reflow processes : 2 or less <Note> (1) Start second reflow after the device temperature, which rose because of the first reflow, has dropped to the normal level. (2) Do not clean the flux with water after the first reflow.	VP15-00-2
Wave soldering	Solder temperature : $260^{\circ} \mathrm{C}$ max., Time : 10 seconds max., Number of reflow processes : 1 Preheating temperature : $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature : $300^{\circ} \mathrm{C}$ max., Time : 3 seconds max., (per one side of device)	-

Caution Do not apply two or more soldering methods (except partial heating method) to the same device.

Table 13-2. Soldering Conditions for Through-Hole Type Devices
μ PD75064CU- $\times \times x$: 42-pin plastic shrink DIP (600 mil)
μ PD75066CU- $\times \times x$: 42-pin plastic shrink DIP (600 mil)
μ PD75068CU- $\triangle \times \times$: 42-pin plastic shrink DIP (600 mil)
μ PD75064CU(A) $-x \times x$: 42-pin plastic shrink DIP (600 mil)
μ PD75066CU(A) $-\times \times \times$: 42-pin plastic shrink DIP (600 mil)
μ PD75068CU(A) $-\times \times \times$: 42-pin plastic shrink DIP (600 mil)

Soldering method	Soldering conditions
Wave soldering (Only leads)	Soldering bath temperature : $260^{\circ} \mathrm{C}$ max., Time : 10 seconds max.
Partial heating	Pin temperature : $300^{\circ} \mathrm{C}$ max., Time : 3 seconds max. (per pin)

Caution Solder only the leads by means of wave soldering, and exercise care that the jetted solder does not come in contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are provided for the development of a system which employs the μ PD75064, 75066, 75068, 75064(A), 75066(A), 75068(A).

Hardware	IE-75000-R Note1 IE-75001-R	In-circuit emulator for 75X series
	IE-75000-R-EM ${ }^{\text {Note2 }}$	Emulation board for IE-75000-R or IE-75001-R
	EP-75068CU-R	Emulation probe for all shrink DIP versions of this series
	$\begin{aligned} & \text { EP-75068GB-R } \\ & \qquad \text { EV-9200G-44 } \end{aligned}$	Emulation probe for all QFP versions of this series. A 44-pin conversion socket EV-9200G-44 is contained in this product.
	PG-1500	PROM programming equipment
	PA-75P008CU	An adapter for connecting the PG-1500 to the μ PD75P068CU/GB.
Software	IE control program	Host machines: PC-9800 series (MS-DOS ${ }^{\text {TM }}$ Ver. 3.30 to Ver. 5.00A Note3) IBM PC/AT ${ }^{\text {TM }}$ (refer to $\mathbf{O S}$ for IBM PC)
	PG-1500 controller	
	RA75X relocatable assembler	

Notes 1. Available for maintenance only
2. The IE-75000-R-EM is not installed in the IE-75001-R.
3. Ver. $5.00 / 5.00 \mathrm{~A}$ has the task swap function, but it cannot be used with this software.

OS for IBM PC

The following products are supported as OS for IBM PCs.

OS	Version
PC DOS	
MS	Ver. 5.02 to Ver. 6.1
IBM DOS	Ver. 3.30 to Ver. $5.00{ }^{\text {Note1 }}$, 5.0/V Note2

Notes 1. Ver. 5.0 and later have the task swap function, but it cannot be used with this software.
2. Only the English mode is supported.

Remark For development tools supplied by third-party manufacturers, refer to 75X Series Selection Guide (IF-1027).

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents related to device

	Document
User's Manual	Doc. No.
Instruction Quick Reference	IEU-1366
Application Note	-
$75 X$ Series Selection Guide	IEA-1296

Documents related to development tool

Document		Doc. No.
Hardware	IE-75000-R/IE-75001-R User's Manual	EEU-1416
	IE-75000-R-EM User's Manual	EEU-1294
	EP-75068CU-R User's Manual	EEU-1429
	EP-75068GB-R User's Manual	EEU-1428
	PG-1500 User's Manual	EEU-1335
Software	RA75X Assembler Package User's Manual	Operation
		EEU-1346
	PG-1500 Controller User's Manual	

Other related documents

Document	Doc. No.
Package Manual	IEI-1231
Semiconductor Device Mounting Technology Manual	IEI-1207
Quality Grades on NEC Semiconductor Devices	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	-
Electrostatic Discharge (ESD) Test	-
Guide to Quality Assurance for Semiconductor Devices	MEI-1202
Microcomputer-Related Product Guide - Third Party Products	-

Caution The contents of the documents listed above are subject to change without prior notice to users. Make sure to use the latest edition when starting design.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pulldown circuitry. Each unused pin should be connected to Vdd or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.
Application examples recommended by NEC Corporation
Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

MS-DOS is a trademark of Microsoft Corporation.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

