

| Absolute Maximum Ratings(Note 1) |  |
| :---: | :---: |
| Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ ) | -0.5 V to +7.0 V |
| DC Switch Voltage ( $\mathrm{V}_{\mathrm{S}}$ ) (Note 2) | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| DC Input Voltage ( $\mathrm{V}_{\mathrm{IN}}$ ) (Note 2) | -0.5 V to +7.0 V |
| DC Input Diode Current ( $\mathrm{I}_{\mathrm{IK}}$ ) |  |
| @ ( IIK$) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$ | -50 mA |
| DC Output Current (lout) | 128 mA |
| DC $\mathrm{V}_{\mathrm{CC}}$ or Ground Current ( $\mathrm{I}_{\mathrm{CC}} / /_{\mathrm{GND}}$ ) | $\pm 100 \mathrm{~mA}$ |
| Storage Temperature Range ( $\mathrm{T}_{\text {STG }}$ ) | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature under Bias ( $\mathrm{T}_{\mathrm{J}}$ ) | $150^{\circ} \mathrm{C}$ |
| Junction Lead Temperature ( $\mathrm{T}_{\mathrm{L}}$ ) (Soldering, 10 seconds) | $260^{\circ} \mathrm{C}$ |
| Power Dissipation ( $\mathrm{P}_{\mathrm{D}}$ ) @ $+85^{\circ} \mathrm{C}$ | 180 mW |

## Recommended Operating Conditions (Note 3)

| Supply Voltage Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 1.65 V to 5.5 V |
| :--- | ---: |
| Control Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Switch Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{CC}}$ |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ |  |
| $\quad$ Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$ | $0 \mathrm{~ns} / \mathrm{V}$ to $10 \mathrm{~ns} / \mathrm{V}$ |
| $\quad$ Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$ | $0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$ |
| Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ | $250^{\circ} \mathrm{C} / \mathrm{W}$ |

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifica tions should be met, without exception, to ensure that the system design is eliable over its power supply, temperature, and output/input loading vari ables. Fairchild does not recommend operation outside datasheet specifications.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Control inputs must be held HIGH or LOW, they must not float.

## DC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{CC}}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min Max |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH Level Input Voltage | $\begin{array}{\|c\|} \hline 1.65-1.95 \\ 2.3-5.5 \\ \hline \end{array}$ | $\begin{gathered} 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$ |  |  | $\begin{gathered} 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$ | V |  |
| $\mathrm{V}_{\text {IL }}$ | LOW Level Input Voltage | $\begin{array}{\|c\|} \hline 1.65-1.95 \\ 2.3-5.5 \end{array}$ |  |  | $\begin{gathered} \hline 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$ | $\begin{gathered} \hline 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$ | V |  |
| $\mathrm{I}_{\text {IN }}$ | Input Leakage Current | 0-5.5 |  |  | $\pm 0.1$ | $\pm 1.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$ |
| IOFF | OFF State Leakage Current | 1.65-5.5 |  |  | $\pm 0.1$ | $\pm 1.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{A}, \mathrm{B}_{\mathrm{n}} \leq \mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{R}_{\mathrm{ON}}$ | Switch On Resistance (Note 4) | 4.5 |  | 5.0 | 7.0 | 7.0 | $\Omega$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$ |
|  |  |  |  | 6.0 | 12.0 | 12.0 |  | $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$ |
|  |  |  |  | 7.0 | 15.0 | 15.0 |  | $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$ |
|  |  | 3.0 |  | 6.5 | 9.0 | 9.0 |  | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$ |
|  |  |  |  | 9.0 | 20.0 | 20.0 |  | $\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$ |
|  |  | 2.3 |  | 8.0 | 12.0 | 12.0 |  | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$ |
|  |  |  |  | 11.0 | 30.0 | 30.0 |  | $\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$ |
|  |  | 1.65 |  | 10.0 | 20.0 | 20.0 |  | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$ |
|  |  |  |  | 17.0 | 50.0 | 50.0 |  | $\mathrm{V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Supply Current <br> All Channels ON or OFF | 5.5 |  |  | 1.0 | 10.0 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$ |
| ASR | Analog Signal Range | $\mathrm{V}_{\mathrm{CC}}$ | 0.0 |  | $\mathrm{V}_{\mathrm{CC}}$ | $0.0 \quad \mathrm{~V}_{\mathrm{CC}}$ | V |  |
| $\triangle \mathrm{R}_{\mathrm{ON}}$ | On Resistance Match Between Channels (Note 4)(Note 5)(Note 6) | 4.5 |  | 0.15 |  |  | $\Omega$ | $\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$ |
|  |  | 3.0 |  | 0.22 |  |  |  | $\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=2.1$ |
|  |  | 2.3 |  | 0.31 |  |  |  | $\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6$ |
|  |  | 1.65 |  | 0.62 |  |  |  | $\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15$ |
| $\mathrm{R}_{\text {flat }}$ | On Resistance Flatness (Note 4)(Note 5)(Note 7) | 5.0 |  | 6.0 |  |  | $\Omega$ | $\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$ |
|  |  | 3.3 |  | 12.0 |  |  |  | $\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$ |
|  |  | 2.5 |  | 40.0 |  |  |  | $\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$ |
|  |  | 1.8 |  | 140.0 |  |  |  | $\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}}$ |

Note 4: Measured by the voltage drop between $A$ and $B_{n}$ pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two ( A or $\mathrm{B}_{\mathrm{n}}$ Ports)
Note 5: Parameter is characterized but not tested in production.
Note 6: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical $\mathrm{V}_{\mathrm{CC}}$, temperature and voltage levels.
Note 7: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

## AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{Cc}}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | Units | Conditions | Figure <br> Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max |  |  |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$ | Propagation Delay <br> Bus to Bus <br> (Note 8) | 1.65-1.95 |  | 2.0 |  |  |  | ns | $V_{1}=$ OPEN | Figures$1,2$ |
|  |  | $2.3-2.7$ |  | 1.1 |  |  |  |  |  |  |
|  |  | 3.0-3.6 |  | 0.7 |  |  |  |  |  |  |
|  |  | 4.5-5.5 |  | 0.4 |  |  |  |  |  |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$ | Output Enable Time Turn on Time (A to $B_{n}$ ) | 1.65-1.95 | 5.0 |  | 32.0 | 5.0 | 34.0 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$ | Figures 1, 2 |
|  |  | $2.3-2.7$ | 3.0 |  | 15.0 | 3.0 | 16.5 |  |  |  |
|  |  | 3.0-3.6 | 2.0 |  | 9.5 | 2.0 | 11.0 |  |  |  |
|  |  | 4.5-5.5 | 1.5 |  | 6.5 | 1.5 | 7.0 |  |  |  |
| $\begin{aligned} & \hline t_{P L Z} \\ & t_{P H Z} \end{aligned}$ | Output Disable Time Turn Off Time <br> (A Port to $\mathrm{B}_{\mathrm{n}}$ Port) | 1.65-1.95 | 3.0 |  | 14.0 | 3.0 | 14.5 | ns | $\begin{aligned} & V_{1}=2 \times V_{C C} \text { for } t_{P L Z} \\ & V_{I}=0 V \text { for } t_{P H Z} \end{aligned}$ | Figures 1, 2 |
|  |  | $2.3-2.7$ | 2.0 |  | 7.2 | 2.0 | 7.8 |  |  |  |
|  |  | 3.0-3.6 | 1.5 |  | 5.1 | 1.5 | 5.5 |  |  |  |
|  |  | 4.5-5.5 | 0.8 |  | 3.7 | 0.8 | 4.0 |  |  |  |
| $\mathrm{t}_{\mathrm{B}-\mathrm{M}}$ | Break Before Make Time (Note 9) | 1.65-1.95 | 0.5 |  |  | 0.5 |  | ns |  | Figure 3 |
|  |  | 2.3-2.7 | 0.5 |  |  | 0.5 |  |  |  |  |
|  |  | 3.0-3.6 | 0.5 |  |  | 0.5 |  |  |  |  |
|  |  | 4.5-5.5 | 0.5 |  |  | 0.5 |  |  |  |  |
| Q | Charge Injection (Note 9) | $\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$ |  | $\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$ |  |  |  | pC | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$ | Figure 4 |
| OIRR | Off Isolation (Note 10) | 1.65-5.5 |  | -58.0 |  |  |  | dB | $\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$ | Figure 5 |
| Xtalk | Crosstalk | 1.65-5.5 |  | -60.0 |  |  |  | dB | $\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$ | Figure 6 |
| BW | -3dB Bandwidth | 1.65-5.5 |  | 250.0 |  |  |  | MHz | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ | Figure 9 |
| THD | Total Harmonic Distortion (Note 9) | 5.0 |  | . 01 |  |  |  | \% | $\begin{aligned} & R_{L}=600 \Omega \\ & 0.5 V_{P-P} \\ & f=600 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$ |  |

Note 8: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the
On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance)
Note 9: Guaranteed by Design.
Note 10: Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$

| Capacitance (Note 11) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Typ | Max | Units | Conditions | Figure Number |
| $\mathrm{C}_{\text {IN }}$ | Control Pin Input Capacitance | 2.0 |  | pF | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ |  |
| C ${ }_{\text {IO-B }}$ | B Port Off Capacitance | 3.6 |  | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | Figure 7 |
| C IOA-ON | A Port Capacitance When Switch Is Enabled | 14.5 |  | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | Figure 8 |

## AC Loading and Waveforms



Note: Input driven by $50 \Omega$ source terminated in $50 \Omega$
Note: $\mathrm{C}_{\mathrm{L}}$ includes load and stray capacitance Note: Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

FIGURE 1. AC Test Circuit


FIGURE 2. AC Waveforms


FIGURE 3. Break Before Make Interval Timing

AC Loading and Waveforms (Continued)


FIGURE 4. Charge Injection Test


FIGURE 5. Off Isolation


FIGURE 7. Channel Off Capacitance


FIGURE 6. Crosstalk


FIGURE 8. Channel On Capacitance


FIGURE 9. Bandwidth


Physical Dimensions inches (millimeters) unless otherwise noted


## MAB08AREVC

## 8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
