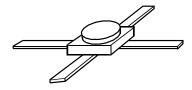


Cascadable Silicon Bipolar MMIC Amplifiers

Technical Data

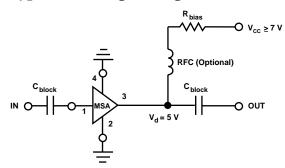
MSA-0370

Features


- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 2.8 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- * 10.0 dBm Typical $P_{1 dB}$ at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Gold-ceramic Microstrip Package

Description

The MSA-0370 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.


The MSA-series is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to

70 mil Package

achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

MSA-0370 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	80 mA	
Power Dissipation ^[2,3]	425 mW	
RF Input Power	+13dBm	
Junction Temperature	200°C	
Storage Temperature	−65 to 200°C	

Thermal Resistance^[2,4]:

 $\theta_{jc} = 125$ °C/W

Notes:

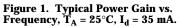
- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 8 mW/°C for $T_C > 147$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

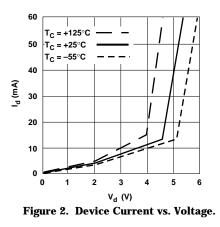
Electrical Specifications^[1], $T_A = 25^{\circ}C$

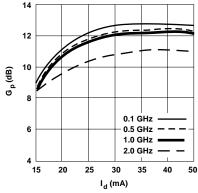
Symbol	Parameters and Test Conditions: I_{d} = 35 mA, Z_{O} = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	11.5	12.5	13.5
ΔG_P	Gain Flatness	f = 0.1 to 1.8 GHz	dB		± 0.6	± 1.0
f _{3 dB}	3 dB Bandwidth		GHz		2.8	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.8:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.8:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		10.0	
IP_3	Third Order Intercept Point	f = 1.0 GHz	dBm		23.0	
tD	Group Delay	f = 1.0 GHz	psec		125	
Vd	Device Voltage		V	4.5	5.0	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Notes:

1. The recommended operating current range for this device is 20 to 50 mA. Typical performance as a function of current is on the following page.


 S_{21} S_{22} S_{11} S_{12} Freq. GHz Mag Ang dB Mag dB Mag Ang Mag Ang Ang 4.27 $\mathbf{2}$ -17912.6 176 -18.6 0.1 .13 .118 .09 -14 .121 0.2 -18012.6 4.25 171 -18.32-29.13 .10 -18012.5 4.21 162 -18.4.121 -52 0.4 .12 4 .12 0.6 -17812.4 4.17 154 -18.2.123 6 .14 -70 .11 -17412.3 4.11 146 -17.8.129 8 .17 -82 0.8 .11 12.2 1.0 -1684.06 137 -17.7.130 8 .20 -92 .10 1.5.11 -14911.73.85 116 -17.1.140 11 .24 -1142.0 .16 -14711.1 3.57 96 -16.2.155 11 .27 -1342.5.22 82 .27 -146 -15110.3 3.27 -15.6.167 14 .28 .27 3.0 -1609.3 2.91 65 -15.2.174 11 -159.33 8.2 -1692.5848 -14.5.188 7.26 -163 3.5 .25 4.0 .36 -1777.12.2734 -14.3.192 3 -162.38 9 .203 .23 5.0 163 5.11.81 -13.8-5 -1536.0 .39 1323.4 -14 -13.5.213 -13 .24 -1601.48


MSA-0370 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 35 mA$)


A model for this device is available in the DEVICE MODELS section.

(unless otherwise noted) 14 12 Gain Flat to DC 10 8 (gp) ൭ 6 4 2 0 0.1 0.3 0.5 1.0 3.0 6.0 FREQUENCY (GHz)

Typical Performance, $T_A = 25^{\circ}C$

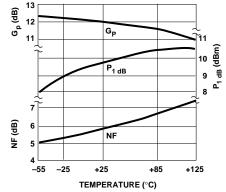


Figure 4. Output Power at 1 dB Gain **Compression, NF and Power Gain vs. Mounting Surface Temperature**, $f = 1.0 \text{ GHz}, I_d = 35 \text{ mA}.$

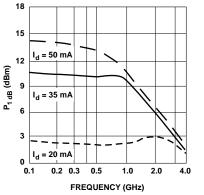
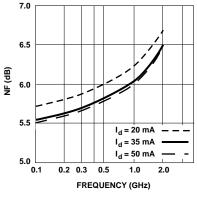
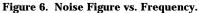
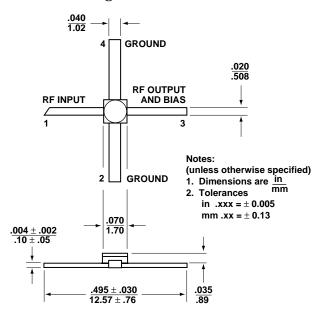





Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

70 mil Package Dimensions

