

NPN Silicon RF Transistor

Preliminary data

- For high gain low noise amplifiers
- Smallest Package 1.4 x 0.8 x 0.59mm
- Noise figure F = 1.1 dB at 1.8 GHz
 outstanding G_{ma} = 20 dB at 1.8 GHz
- Transition frequency $f_T = 25 \text{ GHz}$
- Gold metallization for high reliability
- SIEGET ® 25 GHz f_T Line

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package
BFP420F	AMs	1 = B	2 = E	3 = C	4 = E	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit	
Collector-emitter voltage	$V_{\sf CEO}$	4.5	V	
Collector-base voltage	V_{CBO}	15		
Emitter-base voltage	V _{EBO}	1.5		
Collector current	l _C	35	mA	
Base current	I _B	3		
Total power dissipation	P _{tot}	160	mW	
$T_{S} \le 111^{\circ}C^{1}$				
Junction temperature	T _j	150	°C	
Ambient temperature	T _A	-65 150		
Storage temperature	$T_{ m stg}$	-65 150		

Thermal Resistance

Junction - soldering point ²⁾	R_{thJS}	≤ 240	K/W

 $^{^{1}\}textit{T}_{S}$ is measured on the emitter lead at the soldering point to the pcb

 $^{^{2}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.								
Parameter	Symbol	Values			Unit			
		min.	typ.	max.				
DC characteristics	•		•	•	•			
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V			
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$	` '							
Collector-base cutoff current	l _{CBO}	-	-	200	nA			
$V_{CB} = 5 \text{ V}, I_{E} = 0$								
Emitter-base cutoff current	/ _{EBO}	-	-	35	μA			
$V_{\rm EB} = 1.5 \text{ V}, I_{\rm C} = 0$								
DC current gain	h _{FE}	50	80	150	-			
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 4 V								
AC characteristics (verified by random sampling	g)							
Transition frequency	f _T	18	25	-	GHz			
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 3 \text{ V}, \ f = 2 \text{ GHz}$								
Collector-base capacitance	C _{cb}	-	0.15	0.3	pF			
$V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}$								
Collector-emitter capacitance	C _{ce}	-	0.33	-	1			
$V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}$								
Emitter-base capacitance	C _{eb}	-	0.5	-				
$V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$								
Noise figure	F	-	1.1	-	dB			
$I_{\rm C} = 5 \text{ mA}, \ V_{\rm CE} = 2 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt} \ ,$								
f = 1.8 GHz								
Power gain, maximum available 1)	G _{ma}	-	20	-				
$I_{C} = 20 \text{ mA}, V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt},$								
f = 1.8 GHz								
Insertion power gain	$ S_{21} ^2$	-	17	-				
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, f = 1.8 GHz,								
$Z_{\rm S} = Z_{\rm L} = 50\Omega$								
Third order intercept point at output ²⁾	IP_3	-	24	-	dBm			
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ =50 Ω ,								
<i>f</i> = 1.8 GHz								
1dB Compression point at output ³⁾	P _{-1dB}	-	10.5	-				
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, f = 1.8 GHz,								
$Z_{\rm S}=Z_{\rm L}=50\Omega$								

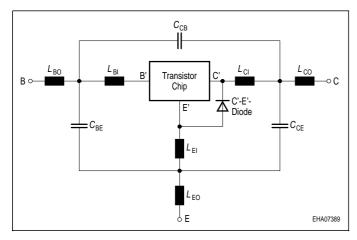
 $^{^{1}}G_{\text{ma}} = |S_{21} / S_{12}| (k-(k^{2}-1)^{1/2})$

 $^{^2}$ IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1MHz to 6GHz.

³DC current no input power

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

Transistor Chip Data


IS =	0.20045	fA	BF =	72.534	-	NF =	1.2432	-
VAF =	28.383	V	IKF =	0.48731	Α	ISE =	19.049	fA
NE =	2.0518	-	BR =	7.8287	-	NR =	1.3325	-
VAR =	19.705	V	IKR =	0.69141	Α	ISC =	0.019237	fA
NC =	1.1724	-	RB =	8.5757	Ω	IRB =	0.72983	mA
RBM =	3.4849	Ω	RE =	0.31111		RC =	0.10105	Ω
CJE =	1.8063	fF	VJE =	0.8051	V	MJE =	0.46576	-
TF =	6.7661	ps	XTF =	0.42199	-	VTF =	0.23794	V
ITF =	1	mA	PTF =	0	deg	CJC =	234.53	fF
VJC =	0.81969	V	MJC =	0.30232	-	XCJC =	0.3	-
TR =	2.3249	ns	CJS =	0	F	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.73234	-	TNOM	300	K

C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) :

IS =	3.5	fA	N =	1.02	-	RS =	10	Ω
------	-----	----	-----	------	---	------	----	---

All parameters are ready to use, no scaling is necessary

Package Equivalent Circuit:

$$L_{\rm BO} = 0.22$$
 nH $L_{\rm BI} = 0.42$ nH $L_{\rm EO} = 0.28$ nH $R_{\rm LBI} = 0.15$ Ω $L_{\rm CO} = 0.22$ nH $L_{\rm EI} = 0.26$ nH KBO-EO = 0.10 - $R_{\rm LEI} = 0.11$ Ω KBO-CO = 0.01 - $L_{\rm CI} = 0.35$ nH KEO-CO = 0.11 - $R_{\rm LCI} = 0.13$ Ω $C_{\rm BE} = 34$ fF KCI-EI = -0.05 - $C_{\rm BC} = 2$ fF KBI-CI = -0.08 - Valid up to 6GHz

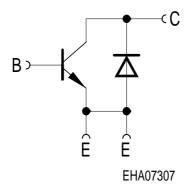
The TSFP-4 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

3

 $R_{\rm LXI}$ are series resistors for the inductances $L_{\rm XI}$ and $K_{\rm Xa-yb}$ are the coupling coefficients between the inductances $L_{\rm Xa}$ and $L_{\rm Vb}$. The referencepins for the coupled ports are B, E, C, B`, E`, C`.

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

Dec-07-2001



For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies < 100MHz.
 For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

• This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.