32-Bit RISC Microcontroller

CMOS

FR Family MB91110 Series

MB91110/MB91V110

- DESCRIPTION

The MB91110 series is a standard single-chip micro controller featuring various I/O resources and bus control mechanisms to incorporate the control with required for high performance high-speed CPU processes, having a 32-bit RISC CPU (FR30 series) in its core. Although external bus access is the basis for supporting a large address space accessible by a 32-bit CPU, a 1-KB instruction cache memory has been built-in to increase the instruction/ execution speed of the CPU.
This unit features the optimal specifications for incorporating applications that require high performance CPU processing power such as navigation systems, high performance facsimile systems, printer control, etc.

■ FEATURES
FR30CPU

- 32-bit RISC, load / store architecture, 5-level pipeline
- Operating frequency : external 25 MHz , internal 50 MHz
- Multi-purpose register : 32 bits $\times 16$
- 16-bit fixed length instructions (basic instruction), 1 instruction per cycle
- Instructions for barrel shift, bit processing and inter memory transfers : Instructions suited to loading purposes
- Function entry / exit instruction, multi load / store instruction of register details : Instruction capable of handling High level language instruction.
- Register Interlock function : Simplification of assembler description
(Continued)

PACKAGE

> 144-pin plastic LQFP

(FPT-144P-M08)

MB91110 Series

(Continued)

- Branch instruction with delay slot : Reduction in overheads in case of branching
- Multiplier is built-in / Supported at instruction level Signed 32-bit multiplication: 5 cycles
Signed 16-bit multiplication: 3 cycles
- Interruption (saving PC and PS): 6 cycles, 16 priority levels

Bus Interface

- 24-bit address bus (16 MB space)
- Operating frequency : 25 MHz
- 16- / 8-bit data bus
- Basic external bus cycle : 2 clock cycles
- Chip select output that can be set to a minimum 64-Kbyte units
- Interface support for various memories DRAM interface (areas 4,5)
- Automatic waiting cycle : Can be randomly set from 0 to 7 cycles per area
- Unused data and address pins can be used as input/output ports.
- Supports "little endian" mode (One area is selected from areas 1 to 5)

DRAM Interface

- 2-bank individual control (area 4, 5)
- Normal mode / high speed page mode
- Basic bus cycles : normally 5 cycles, 1 cycle access is possible in high-speed page mode.
- Programmable waveform : 1 cycle waiting can be inserted automatically in RAS and CAS.
- DRAM refresh

CBR refresh (Interval is randomly set using the 6-bit timer.)
Self refresh mode

- Supports addresses for 8, 9, 10 and 12 columns
- 2CAS/1WE or 2WE/1CAS can be selected.

Cache Memory

- 1 KB instruction cache
- 2 way set associative
- 32 blocks / way, 4 entries (4 words) / block
- Lock function : Residing in the specified program codes at cache

DMA Controller (DMAC)

- 5 channels
- External \rightarrow external 2.5 access cycles / transfer (if 2 clock cycles are defined as 1 access cycle)
- Internal \rightarrow external 1.5 access cycles / transfer (if 2 clock cycles are defined as 1 access cycle)
- Address register (inc, dec, or reload are possible) : 32 bits $\times 5$ channels
- Transfer count register (reload possible) : 16 bits $\times 5$ channels
- Transfer factors : external pin / built-in resources interruption request / software
- Transfer sequence Step transfer / block transfer Burst / consecutive transfer
- Transfer data length : 8-bit, 16 -bit or 32 -bit can be selected
- Suspension is possible using NMI / interruption request

UART

- Fully duplicated double buffer
- Data length : 7 to 9 bits (without parity), 6 to 8 bits (with parity)

MB91110 Series

- Asynchronous (start-stop synchronization) or CLK synchronized communication can be selected.
- Multiprocessor mode
- Dedicated baud rate generator is built-in.
- External clock can be used as the transfer clock
- Baud rate clock can be output
- Error detection : parity, frame, overrun

PPG Timer

- 16 bits, 6 channels (frequency setting register / duty setting register)
- PWM function or one-shot function can be selected
- Initiation : Software or external trigger can be selected

A/D Converter (sequential conversion type)

- 10-bit resolution, 8 channels
- Sequential comparison conversion : $5.6 \mu \mathrm{~s}$ in the case of 25 MHz
- Sample \& hold circuit is built-in.
- Conversion mode : Single, scan or repeat conversion can be selected.
- Initiation : Software, external trigger or built-in timer can be selected.

Reloading Timer

- 16-bit timer : 2 channels
- Internal clock : 2 clock cycle resolutions, 2,8 or 32 cycles can be selected.
- Pin input : event counter input / gate function
- Rectangular wave output

Other Interval Timer

- Watchdog timer : 1 channel

Bit Search Module

- Searches the first " 1 " / " 0 " change bit positions within 1 cycle from MSB in 1 word.

Interruption Controller

- External interruption input : Mask impossible interruption ($\overline{\mathrm{NMI}}$), normal interruption $\times 8$ (INT0 to INT7)
- Internal interruption factors : UART, DMAC, A/D, reloading timer, PPG timer, delay interruption
- Priority levels are programmable except for mask impossible interruption (16 levels)

Reset Factors

- Power-on reset / hardware standby / watchdog timer / software reset / external reset

Low Power Consumption Mode

- Sleep / stop mode

Clock Control

- Gear functions : Operating clock frequencies peripheral to the CPU can be set randomly and independently. Gear locks can be selected from $1 / 1,1 / 2,1 / 4$ or $1 / 8$ (or $1 / 2,1 / 4,1 / 8$, or $1 / 16$) .

Others

- Package : LQFP-144
- CMOS technology : $0.35 \mu \mathrm{~m}$
- Power : $5.0 \mathrm{~V} \pm 10 \%, 3.3 \mathrm{~V} \pm 5 \%$

MB91110 Series

PRODUCT LINEUP

	MB91V110 (For evaluation)	MB91110 (I-RAM mounted version)
I-RAM	16 Kbyte	16 Kbyte
RAM	5 Kbyte	5 Kbyte
ROM	-	-
I-\$	1 Kbyte	1 Kbyte
DSU3 evaluation function	Mounted	-

MB91110 Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-144P-M08)

MB91110 Series

PIN DESCRIPTIONS

Pin no.	Pin name	1/0*	Circuit type	Function
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { D16/P20 } \\ & \text { D17/P21 } \\ & \text { D18/P22 } \\ & \text { D19/P23 } \\ & \text { D20/P24 } \\ & \text { D21/P25 } \\ & \text { D22/P26 } \\ & \text { D23/P27 } \end{aligned}$	I/O	C	These pins use bits 16 to 23 of the external data bus. They can be used as a port (P20 to P27) if the external bus width is 8 bits.
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline \text { D24 } \\ & \text { D25 } \\ & \text { D26 } \\ & \text { D27 } \\ & \text { D28 } \\ & \text { D29 } \\ & \text { D30 } \\ & \text { D31 } \end{aligned}$	I/O	C	These pins use bits 24 to 31 of the external data bus.
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	A00 A01 A02 A03 A04 A05 A06 A07	I/O	C	These pins use bits 00 to 07 of the external address bus.
$\begin{aligned} & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { A08 } \\ & \text { A09 } \\ & \text { A10 } \\ & \text { A11 } \\ & \text { A12 } \\ & \text { A13 } \\ & \text { A14 } \\ & \text { A15 } \end{aligned}$	I/O	C	These pins use bits 08 to 15 of the external address bus.
$\begin{aligned} & 38 \\ & 39 \\ & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$	A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66 A23/P67	I/O	C	These pins use bits 16 to 23 of the external address bus.
48	RDY/P80	I/O	C	This is for external ready input. "0" is input if the bus cycle being executed is incomplete. It can be used as a port when not otherwise used.
49	BGRNT/P81	I/O	H	This is the external bus open reception output. " L " is output if the external bus is opened. It can be used as a port when not otherwise used.

(Continued)

MB91110 Series

Pin no.	Pin name	1/0*	Circuit type	Function		
50	BRQ/P82	I/O	C	This is the external bus open request input. "1" is input if the external bus is to be opened. It can be used as a port when not otherwise used.		
51	$\overline{\mathrm{RD}}$	0	G	This is the external bus read strobe.		
52	WRO	0	G	This is the external bus write strobe.		
					16-bit bus width	8-bit bus width
53	WR1/P85	I/O	H	D31-24	WR0	WRO
				D23-16	WR1	(Port is possible)
55	CSO	0	G	Chip select 0 output (Low active)		
$\begin{aligned} & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	CS1/PA1 CS2/PA2 CS3/PA3 CS4/PA4 CS5/PA5	I/O	H	Chip select 1 output (Low active) Chip select 2 output (Low active) Chip select 3 output (Low active) Chip select 4 output (Low active) Chip select 5 output (Low active) They can be used as ports when not otherwise used.		
61	CLK/PA6	I/O	H	This is the system clock output. The same clock as the standard clock is output. This can be used as a port when not otherwise used.		
$\begin{aligned} & 62 \\ & 63 \\ & 64 \\ & 65 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \end{aligned}$	RAS0/PB0 CSOL/PB1 CSOH/PB2 DW0/PB3 RAS1/PB4 CS1L/PB5 CS1H/PB6 DW1/PB7	I/O	H	RAS output with DRAM bank 0. CASL output with DRAM bank 0 . CASH output with DRAM bank 0 . WE output with DRAM bank 0. (Low active) RAS output with DRAM bank 1. CASL output with DRAM bank 1. CASH output with DRAM bank 1. WE output with DRAM bank 1. (Low active) They can be used as ports when not otherwise used.		
72	$\overline{\mathrm{NMI}}$	1	E	Non Maskable Interrupt (NMI) input. (Low active)		
$\begin{aligned} & 73 \\ & 74 \\ & 75 \end{aligned}$	$\begin{aligned} & \hline \text { MD0 } \\ & \text { MD1 } \\ & \text { MD2 } \\ & \hline \end{aligned}$	1	1	These are mode pins from 0 to 2. Basic MCU operation modes are set using these pins. They should be connected directly to V cc or V_{ss} for use.		
$\begin{aligned} & \hline 77 \\ & 78 \end{aligned}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	A	Clock (oscillation) input. Clock (oscillation) output.		
80	$\overline{\text { RST }}$	I	B	This is the external reset input. (Low active)		
81	HST	1	E	This is the hardware standby input. (Low active)		
83	(OPEN)	-	-	Set this to OPEN.		
$\begin{aligned} & 84 \\ & 85 \\ & 86 \end{aligned}$	(OPEN) (OPEN) (OPEN)	-	-	Set this to OPEN.		

(Continued)

MB91110 Series

Pin no.	Pin name	1/0*	Circuit type	Function
$\begin{aligned} & \hline 87 \\ & 88 \\ & 89 \\ & 90 \end{aligned}$	(OPEN) (OPEN) (OPEN) (OPEN)	-	-	Set this to OPEN.
91	(OPEN)	-	-	Set this to OPEN.
92	AV ${ }_{\text {cc }}$	-	-	Vcc power supply for the A/D converter.
93	AVRH	-	-	A/D converter reference voltage (high potential side). Be sure to turn on/off this pin with potential higher than AVRH applied to Vcc.
94	AVRL	-	-	A/D converter reference voltage (low potential side).
95	AVss	-	-	Vss power supply for the A/D converter.
$\begin{aligned} & \hline 96 \\ & 97 \\ & 98 \\ & 99 \\ & 100 \\ & 101 \\ & 102 \\ & 103 \end{aligned}$	ANO AN1 AN2 AN3 AN4 AN5 AN6 AN7	1	D	[ANO to 7] A/D converter analog input.
106	$\overline{\text { ATG/PE0 }}$	I/O	H	[$\overline{\mathrm{TTG}}]$ This is the external trigger input for the A/D converter. This function is always used if selected as the initiation factor for A/D, so output by other functions should be stopped except when it is carried out intentionally.
				[PE0] This is a general-purpose input/output port.
107	TRGO, 3/PE1	I/O	H	[TRG0 to 5] These are external trigger input pins of the PPG.
$\begin{aligned} & 108 \\ & 109 \end{aligned}$	TRG1, 4/PE2 TRG2, 5/PE3			[PE1 to 3] These are general-purpose input/output ports.
$\begin{aligned} & 110 \\ & 111 \\ & 112 \\ & 113 \end{aligned}$	INT0/PF0 INT1/PF1 INT2/PF2 INT3/PF3	I/O	F	[INT0 to 7] These are external interruption request inputs. This input is always used while the corresponding external interruption is permitted, so output using other functions should be stopped except when carried out intentionally.
$\begin{aligned} & 115 \\ & 116 \\ & 117 \end{aligned}$	INT5/PF5 INT6/PF6 INT7/PF7			[PF0 to 7] These are general-purpose input/output ports.
119	DREQ0/PG0	I/O	H	[DREQ0] This is the DMA external transfer request input (ch 0). This input is always used if selected as the transfer factor for DMAC, so outputs from other functions should be stopped except when carried out intentionally.
				[PGO] This is a multi-purpose input/output port.

(Continued)

MB91110 Series

Pin no.	Pin name	I/O*	Circuit type	Function
120	DACK0/PG1	I/O	C	[DACK0] This is the DMAC external transfer request reception output (ch 0) . This function is effective if the transfer request reception output specification of DMAC is permitted.
				[PG1] This is a multi-purpose input/output port. This function is effective if the transfer request reception output specification of DMAC is prohibited.
121	DEOP0/PG2	I/O	C	[DEOP0] This is the DMA transfer end signal output (ch 0). This function is effective if the transfer end signal output specification of DMAC is permitted.
				[PG2] This is a multi-purpose input/output port. This function is effective if the transfer end signal output specification of DMAC is prohibited.
122	DREQ1/PG3	I/O	H	[DREQ1] This is the DMA external transfer request input (ch 1). This input is always used if selected as the transfer factor of DMAC, so output using other functions should be stopped except when carried out intentionally.
				[PG3] This is a multi-purpose input/output port.
123	DACK1/PG4	I/O	C	[DACK1] This is the DMAC external transfer request reception output (ch 1) . This function is effective if the transfer request reception output specification of DMAC is permitted.
				[PG4] This is a multi-purpose input/output port. This function is effective if the transfer request reception output specification of DMAC is prohibited.
124	DEOP1/PG5	I/O	C	[DEOP1] This is the DMA transfer end signal output (ch 1) . This function is effective if the transfer end signal output specification of DMAC is permitted.
				[PG5] This is a multi-purpose input/output port. This function is effective if the transfer end signal output specification of DMAC is prohibited.
127	DREQ2/PH0	I/O	H	[DREQ2] This is the DMA external transfer request input (ch 2). This input is always used if selected as the transfer factor of DMAC, so output using other functions should be stopped except when carried out intentionally.
				[PH0] This is a multi-purpose input/output port.
128	DACK2/PH1	I/O	C	[DACK2] This is the DMAC external transfer request reception output (ch 2) . This function is effective if the transfer request reception output specification of DMAC is permitted.
				[PH1] This is a multi-purpose input/output port. This function is effective if the transfer request reception output specification of DMAC is prohibited.

(Continued)

Pin no.	Pin name	1/0*	Circuit type	Function
129	DEOP2/PH2	I/O	C	[DEOP2] This is the DMA transfer end signal output (ch 2) . This function is effective if the transfer end signal output specification of DMAC is permitted.
				[PH2] This is a multi-purpose input/output port. This function is effective if the transfer end signal output specification of DMAC is prohibited.
130	SI/PH3	I/O	H	[SI] This is UART data input. This input is always used while UART inputs, so outputs from other functions should be stopped except when carried out intentionally.
				[PH3] This is a general-purpose input/output port.
131	SO/PH4	I/O	C	[SO] This is UART data output. This function is effective when UART data output specification is permitted.
				[PH4] This is a general-purpose input/output port. This function is effective when UART data output specification is prohibited.
132	SCK/PH5	I/O	H	[SCK] This is UART clock input/output. Clock output is effec tive when UART clock output specification is permitted.
				[PH5] This is a general-purpose input/output port. This function is effective when UART clock output specification is prohibited.
133	TIO/PH6	I/O	H	[TIO] This is reload timer 0 input. It is always used when reload timer input is permitted, so outputs from other functions should be stopped except when carried out intentionally.
				[PH6] This is a general-purpose input/output port.
134	TO0/PH7	I/O	C	[TOO] This is reload timer 0 Output. This function is effective when reload timer specification is permitted.
				[PH7] This is a general-purpose input/output port. This func tion is effective when reload timer specification is prohibited.
136	TII/PIO	I/O	H	[TI1] This is reload timer 1 input. It is always used when reload timer input is permitted, so outputs from other functions should be stopped except when carried out intentionally.
				[PIO] This is a general-purpose input/output port.
137	TO1/PI1	I/O	C	[T01] This is the reload timer 1 output. This function is effec tive if the output specification of the reload timer is permitted
				[PI1] This is a multi-purpose input/output port. This function is effective if the output specification of the reload timer is prohibited.

(Continued)

MB91110 Series

(Continued)

Pin no.	Pin name	I/O*	Circuit type	Function
$\begin{aligned} & 138 \\ & 139 \\ & 140 \end{aligned}$	PPGO/PI2 PPG1/PI3 PPG2/PI4 PPG3/PI5 PPG4/PI6 PPG5/PI7	I/O	C	[PPG0 to 5] This is the PPG timer 1 output. This function is effective if the output specification of the PPG timer is permitted.
$\begin{aligned} & 141 \\ & 142 \\ & 143 \end{aligned}$				[PI2 to 7] This is a multi-purpose input/output port. This function is effective if the output specification of the PPG timer is prohibited.
$\begin{gathered} \hline 18 \\ 46 \\ 66 \\ 76 \\ 104 \\ 125 \end{gathered}$	Vcc5	-	-	This provides power for the 5 V digital circuit system.
$\begin{gathered} 47 \\ 82 \\ 126 \end{gathered}$	Vcc3	-	-	This provides power for the 3 V digital circuit system.
$\begin{gathered} \hline 9 \\ 19 \\ 28 \\ 37 \\ 54 \\ 67 \\ 79 \\ 105 \\ 118 \\ 135 \\ 144 \end{gathered}$	Vss	-	-	This is the earth level for digital circuits.

*: I/O shown above indicates input/output classification.
Note : The I/O port and resource input/outputs for most of the above pins are multiplexed, i.e. Pxx/xxxx. In the event of both the port and resource outputs were to use the same pins, the resource is given priority.

MB91110 Series

I/O CIRCUIT TYPE

Type	Circuit types	Remarks
A		- Oscillation feedback resistance approximately $1 \mathrm{M} \Omega$ - 12.5 MHz oscillation
B		- CMOS level hysteresis input Without standby control With pull-up resistance
C		- CMOS level output CMOS level input With standby contro
D		- A/D converter Analog input pin

(Continued)

MB91110 Series

(Continued)

| Type | Remarks |
| :--- | :--- | :--- | :--- |

MB91110 Series

- HANDLING DEVICES

- Preventing Latch-up

The "Latch-up" phenomenon may be generated if a voltage in excess of V_{cc} or lower than V_{ss} is applied to the input/output pins, or if the voltage exceeds the rating between V_{cc} and Vss . If latch-up is generated, the electrical current increases significantly and may destroy certain components due to the excessive heat, so great care must be taken to ensure that the maximum rating is not exceeded during use.

- Handling Unused Input Pins

Input pins that are not used should be pulled up or down as they may cause erroneous operations if they are left open.

- External Reset Input

" L " level should be input to the $\overline{\mathrm{RST}}$ pin, which is required for at least five machine cycles to ensure the internal status is reset.

- Using External Clocks

If external clock is used, $\mathrm{X0}$ pin should be provided, and X 1 pin should be provided with reverse phase to $\mathrm{X0}$ pin input. If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the " H " output. So, when STOP mode is specified, approximately $1 \mathrm{k} \Omega$ of resistance should be added externally. An example of the external clock usage methods is shown in the following circuit.

Example of External Clock Usage (normal case)

Note : Resistance must be added to the X1 pin if the STOP mode (oscillation stop mode) is used.

- Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.
Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.
It is recommended to provide a bypass capacitor of around 0.1 F between Vcc and Vss pins near the device.

- Crystal Oscillator Circuits

Noise around the X0 or X1 pins may cause erroneous operation. Make sure to provide bypass capacitors via shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuits not cross the lines of other circuit.
A printed circuit board artwork surrounding the X 0 and X 1 pins with ground area for stabilizing the operation is highly recommended.

MB91110 Series

- N.C. Pins
N.C. pins must be opened for use.
- Mode Pins (MD0 to MD2)

Those pins must be directly connected to V_{cc} or $\mathrm{V}_{\text {ss }}$ for use.
Pattern length between V_{cc} or $\mathrm{V}_{\text {ss }}$ and each mode pin on the printed-circuit board should be arranged to be as short as possible to prevent the test mode being erroneously turned on due to noise, they should also be connected with low impedance.

- In the Event that Power Is Turned on

The $\overline{R S T}$ pin must be started from "L" level when the power is turned on, and when the power is adjusted to the Vcc level it should be changed to the "H" level after being left for at least five cycles of the internal operation clock.

- Original Oscillation Input in the Event that Power Is Turned on

The clock must be input until the waiting status for oscillation stability is reset in the event that power is turned on.

- Hardware Standby in the Event that Power Is Turned on

Standby is not set in the event that power is turned on while the $\overline{\text { HST }}$ pin is set at " L " level. The $\overline{H S T}$ pin becomes effective after being reset, but it must first be returned to "H" level.

- Power on Reset

When power is turned on, "Power on reset" must be executed. If the power voltage falls below the guaranteed operating voltage, "Power on reset" must be executed by turning on power supply again.

- Restrictions for Standby

Programs to be set for stop and sleep must be placed on the ROM in the C-bus or address area of the external memory. If placed in the ROM address area on the I-bus, operation can not be guaranteed after returning.

- Execution of Programs in I-ROM/RAM Areas

In the event that programs in the I-ROM/RAM areas are executed, enter the I-ROM/RAM areas in accordance with the JMP system instruction. Conversely, when accessing from programs in the I-ROM/RAM area to those in other areas, exit in accordance with the JMP system instructions.

MB91110 Series

BLOCK DIAGRAM

Note :
Pins are described per function. Some of the pins are multiplexed.
In the event that REALOS is used, an external interruption or built-in timer should be used to control the time.

MB91110 Series

MEMORY SPACE

The FR30 series has 4 Gbytes (2^{32} addresses) of logic address space which the CPU accesses linearly.

1. Memory Map

Note : MB91110 series only supports internal ROM external bus mode.

- Direct addressing area

The following areas of the address space are used for I/O. This area is called the "direct addressing area" and the address of the operand can be specified directly during instruction. The direct area differs depending on data size to be accessed.
$\begin{array}{ll}\text { - Byte data access } & : 0-0 \mathrm{FFH} \\ \text { - Half-word data access } & : 0-1 \mathrm{FFH}_{H} \\ \text { - Word data access } & : 0-3 \mathrm{FF}_{\mathrm{H}}\end{array}$

MB91110 Series

2. Registers

There are two types of multi-purpose registers in the FR family. One is a dedicated purpose register that exists within the CPU and the other is a multi-purpose register that exists in the memory.

- Dedicated Registers

Program Counter (PC) : 32-bit length; indicates instruction storage position.
Program Status (PS) : 32-bit length; stores register pointers and condition codes.
Table Base Register (TBR) : Holds the starting address of the vector table to be used for Exception, Interruption and Trapping (EIT) .
Return Pointer (RP)
: Holds the address to which you will return to from the sub-routine.
System Stuck Pointer (SSP)
: Indicates the systems stuck position.
User Stuck Pointer (USP) : Indicates the user's stuck position.
Multiplication and Division : 32-bit length; These are the registers for multiplication and division. Results Resister (MDH/MDL)

- Program Status (PS)

PS is the register that holds the program status and is classified into three categories, namely, Condition Code Register (CCR) , System Condition Code Register (SCR) and Interruption Level Master Register (ILM) .

MB91110 Series

- Condition Code Register (CCR)

S flag : Specifies the stuck pointer to be used as R15.
I flag : Controls permission and prohibition of user interruption requests.
N flag : Indicates codes when the computation results are defined as integers that are expressed in complements of 2.
Z flag : Indicates if arithmetic results were "0."
V flag . Indicates when operands are used for computation and defined as integers expressed in complements of 2, and indicates whether or not an overflow is generated as a result of the computation.
C flag : Indicates whether carrying or borrowing is generated from the highest bit as a result of the computation.

- System Condition Code Register (SCR)

T flag : Specifies whether or not the step- trace- trap will be valid.

- Interruption Level Mask Register (ILM)

ILM4 to ILM0 : Holds the interruption level mask values, and those values that are held by the ILM are used for the level mask. Interruption requests can only be accepted when the interruption levels handled within the interruption requests to be input into the CPU are stronger than the levels shown by the ILM.

ILM4	ILM3	ILM2	ILM1	ILM0	Interruption level	Strength
0	0	0	0	0	0	Strong
:						
0	1	0	0	0	15	
		!			!	
1	1	1	1	1	31	

MB91110 Series

MULTI-PURPOSE REGISTERS

The multi-purpose registers are CPU registers (R0 to R15) which are used as accumulators for various computations and memory access pointers (field that indicates the address).

- Register bank configuration

Special purposes are assumed for the following three registers out of the 16 registers. Thus, some instructions are emphasized.

R13: Virtual accumulator (AC)
R14: Frame Pointer (FP)
R15 : Stack Pointer (SP)
Initial values for R0 to R14 on resetting are unspecified. The initial value of R15 will be 00000000 н (SSP value).

MB91110 Series

MODE SETTING

1. Pins

- Mode pins and set mode

Mode pins			Mode name	Reset vector access areas	External data bus width	Bus modes
MD2	MD1	MD0	External	8-bit	External ROM external bus mode	
0	0	0	External vector mode 0	External	16 -bit	Setting is prohibited
0	0	1	External vector mode 1	Exter	-	-
0	1	0	-	Internal	(Mode register)	Single chip mode*
0	1	1	Internal vector mode	-	-	Usage is prohibited
1	-	-	-	-		

*: MB91110 series is not supported single chip mode.
2. Register

- Mode register (MODR) and set mode

W: Write only
X: Undecided

* : "0" should always be written for bits other than M1 and M0.
- Bus mode set bit and its functions

M1	M0	Functions	Remarks
0	0	Single chip mode	Not supported
0	1	Internal ROM external bus mode	
1	0	External ROM external bus mode	
1	1	-	Setting is prohibited

MB91110 Series

■ I/O MAP

Address	Register				Internal resource
	+0	+1	+2	+3	
000000 ${ }_{\text {H }}$	-	$\begin{array}{cc} \hline \text { PDR2 } \quad(\mathrm{R} / \mathrm{W}) \\ \mathrm{XXXXXXX} \end{array}$	-	-	Port data register
000004н	-	$\begin{array}{ll} \hline \text { PDR6 } & \text { (R/W) } \\ \text { XXXXXXXX } \end{array}$	-	-	
000008н	PDRB (R/W) XXXXXXXX	$\begin{gathered} \hline \text { PDRA (R/W) } \\ -\mathrm{XXXXX} \end{gathered}$	-	$\begin{array}{cc} \hline \text { PDR8 } & \text { (R/W) } \\ --\mathrm{X}-\mathrm{XXX} \end{array}$	
$00000 \mathrm{C}_{\mathrm{H}}$	-				
000010 ${ }_{\text {H }}$	-	-	$\begin{gathered} \hline \text { PDRE (R/W) } \\ ----X X X X \end{gathered}$	$\begin{array}{cc} \hline \text { PDRF } \quad \text { (R/W) } \\ \text { XXXXXXX } \end{array}$	
000014	$\begin{array}{cc} \hline \text { PDRG } \quad(\mathrm{R} / \mathrm{W}) \\ --\mathrm{XXXXXX}^{2} \end{array}$	$\begin{array}{cc} \hline \text { PDRH } \quad(\mathrm{R} / \mathrm{W}) \\ \text { XXXXXXX } \end{array}$	$\begin{array}{ll} \hline \text { PDRI } & \text { (R/W) } \\ \text { XXXXXXXX } \end{array}$	-	
000018	-				Reserved
$00001 \mathrm{CH}_{\mathrm{H}}$	-				Reserved
000020	$\begin{array}{cc} \hline \text { SSR } & (R / W) \\ 00001-00 \end{array}$	SIDR/SODR(R/W) XXXXXXXX	$\begin{array}{lc} \hline \text { SCR } & \text { (R/W) } \\ 00000100 \end{array}$	$\begin{array}{cc} \hline \text { SMR } & \text { (R/W) } \\ 00000-00 \end{array}$	UART
000024н	-	$\begin{array}{cc} \hline \text { CDCR } & (\mathrm{R} / \mathrm{W}) \\ 0--111 & 1 \end{array}$	-		
000028н	$\begin{array}{lc}\text { TMRLR } & (\mathrm{W}) \\ \text { XXXXXXXX } & \text { XXXXXXXX }\end{array}$		$\begin{array}{cc} \text { TMR } & \text { (R) } \\ \text { XXXXXXXX } & \text { XXXXXXXX } \end{array}$		Reload timer 0
00002CH	-		$\begin{aligned} & \text { TMCSR } \\ & ---0000 \end{aligned}$	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ 00000000 \end{array}$	
000030н	TMRLR (W) XXXXXXXX XXXXXXXX		$\begin{array}{cc} \text { TMR } & \text { (R) } \\ X X X X X X X X & \\ \hline \end{array}$		Reload timer 1
000034н		-	TMCSR $----0000$	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ 00000000 \end{array}$	
000038 ${ }^{\text {H }}$	$\begin{aligned} & \text { ADCR } \\ & ---- \text { - XX } \end{aligned}$	$\begin{gathered} (\mathrm{R}) \\ \mathrm{XXXXXXXX} \end{gathered}$	$\begin{aligned} & \text { ADCS } \\ & 00000000 \end{aligned}$	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ 00000000 \end{array}$	A/D converter (Sequential comparison type)
00003C					Reserved

(Continued)

MB91110 Series

Address	Register				Internal resource
	+0	+1	+2	+3	
000040н	-				Reserved
000044H	Access is prohibited		$\begin{array}{lc}\text { PCSR } & (\mathrm{W}) \\ \text { XXXXXXXX } & \text { XXXXXXXX }\end{array}$		PPG0
000048н	$\begin{array}{lc} \text { PDUT } & (W) \\ & \text { XXXXXXXX } \end{array}$		PCNH (R/W) PCNL (R/W) $0000000-$ 00000000		
00004Сн	Access is prohibited		$\begin{array}{lc} \text { PCSR } & (\mathrm{W}) \\ & \\ \hline X X X X X X X X X X X \end{array}$		PPG1
000050н	$\begin{array}{lr}\text { PDUT } & (\mathrm{W}) \\ \text { XXXXXXXX } & \text { XXXXXXXX }\end{array}$		PCNH \quad (R/W) PCNL (R/W) $0000000-$ 00000000		
000054H	Access is prohibited		$\begin{array}{lc} \hline \text { PCSR } & (W) \\ \text { XXXXXXXX } & \text { XXXXXXXX } \end{array}$		PPG2
000058н	$\begin{array}{lc}\text { PDUT } & (\mathrm{W}) \\ \text { XXXXXXXX } & \text { XXXXXXXX }\end{array}$		PCNH (R/W) PCNL (R/W) $0000000-$ 00000000		
00005Сн	Access is prohibited		$\begin{array}{cc} \hline \text { PCSR } & (\mathrm{W}) \\ \text { XXXXXXXX } & \text { XXXXXXXX } \end{array}$		PPG3
000060н	$\begin{array}{lr}\text { PDUT } & (\mathrm{W}) \\ \mathrm{XXXXXXXX} & X X X X X X X X\end{array}$		PCNH (R/W) PCNL $0000000-$ $(\mathrm{R} / \mathrm{W})$ 00000000		
000064H	Access is prohibited		$\begin{array}{ll}\text { PCSR } & (W) \\ \text { XXXXXXXXX } & \text { XXXXXXXX }\end{array}$		PPG4
000068н	PDUT (W) XXXXXXXX XXXXXXXX		PCNH (R/W) PCNL (R/W) $0000000-$ 00000000		
00006Сн	Access is prohibited		$\begin{array}{lr}\text { PCSR } & (\mathrm{W}) \\ \text { XXXXXXXX } & \text { XXXXXXXX }\end{array}$		PPG5
000070н	PDUT XXXXXXX	(W) XXXXXXXX	$\begin{gathered} \hline \text { PCNH (R/W) } \\ 0000000- \end{gathered}$	$\begin{array}{cc} \hline \text { PCNL } \quad \text { (R/W) } \\ 00000000 \end{array}$	
000074H	-				Reserved
000078н	-				
00007CH	-				
000080н					

(Continued)

MB91110 Series

Address	Register					Internal resource
	+0	+1	+2		+3	
000084H	-					Reserved
000088н	-					
$00008 \mathrm{CH}_{\text {H }}$	-					
000090н	-					
000094н	$\begin{array}{ll} \hline \text { EIRR } & \text { (R/W) } \\ 00000000 \end{array}$	$\begin{array}{ll} \text { ENIR } & \text { (R/W) } \\ 00000000 \end{array}$		-		External interruption/ NMI
000098н	$\begin{aligned} & \text { ELVR } \\ & 00000000 \end{aligned}$	$\begin{array}{r} \text { (R/W) } \\ 00000000 \end{array}$		-		
00009 ${ }_{\text {H }}$	-					Reserved
0000AOH	-					
0000A4H	-					
0000A8H	-					
0000ACH	-					
0000B0н		-				
0000B44		-				
0000B8н		-				
0000BCH	-					
0000COH	-					
0000C4r	-					

(Continued)

MB91110 Series

(Continued)

MB91110 Series

Address	Register				Internal resource
	+0	+1	+2	+3	
000220н					DMA controller channel 2
000224H	$\begin{aligned} & \text { DMACC2 } \\ & ----X X X X \end{aligned}$	xxxx-xXX	(R/W) XXXXXXXX XXXXXXXX		
000228н	DMASA2	XXXXXXXX	XXXXXXXX	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ \mathrm{XXXXXXX} \end{array}$	
00022C ${ }_{\text {¢ }}$	DMADA2 XXXXXXXX	xxXXXXXX	XXXXXXXX	(R/W) XXXXXXXX	
000230н	$\begin{aligned} & \text { DMACS3 } \\ & 0-00-000 \end{aligned}$	$00-0000$	XX-00000	$\begin{array}{r} \text { (R/W) } \\ -\cdots-\mathrm{XX}-\mathrm{X} \\ \hline \end{array}$	DMA controller channel 3
000234H	DMACC3	XXXX-XXX	xxXXXXXX	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ \mathrm{XXXXXXXX} \end{array}$	
000238 ${ }^{\text {+ }}$	DMASA3	XXXXXXXX	XXXXXXXX	$\begin{array}{r} \text { (R/W) } \\ \text { XXXXXXXX } \end{array}$	
00023Cн	DMADA3	XXXXXXXX	XXXXXXXX	$\begin{array}{r} \text { (R/W) } \\ \text { XXXXXXX } \end{array}$	
000240н	DMACS4	$00-0000$	XX-00000	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ \cdots---\mathrm{XX}-\mathrm{X} \end{array}$	DMA controller channel 4
000244H	DMACC4	XXXX-XXX	xxxxxxxx	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ \mathrm{XXXXXXX} \end{array}$	
000248н	DMASA4	XXXXXXXX	XXXXXXXX	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ \mathrm{XXXXXXX} \end{array}$	
00024CH	DMADA4	XXXXXXXX	XXXXXXXX	$\begin{array}{r} (\mathrm{R} / \mathrm{W}) \\ \mathrm{XXXXXXX} \end{array}$	
000250н	DMACR				Overall DMA controller
000254H	-				Reserved
000258 ${ }^{\text {H }}$	-				
00025 CH_{H}			-		
000260н			-		

(Continued)

MB91110 Series

Address	Register				Internal resource
	+0	+1	+2	+3	
000264	-				Reserved
000268	-				
00026CH	-				
000270H	-				
000274	-				
$\begin{gathered} \hline 000278 \text { н } \\ \text { to } \\ 0002 \text { C }_{H} \end{gathered}$	-				
$\begin{gathered} 000300_{\mathrm{H}} \\ \text { to } \\ 0003 \mathrm{E} \mathbf{O H}^{2} \end{gathered}$	-				
0003E4н		-		$\begin{gathered} \text { ICHCR } \quad \text { (R/W) } \\ --000000 \end{gathered}$	Instruction cache
0003E8	-				Reserved
0003ECH		-			I-RAM control
0003FOH	BSD0		xxxxxxxx xxxxxxxx		Bit search module
0003F4н	$\begin{gathered} \text { BSD1 } \\ \text { XXXX } \end{gathered}$	XX XXXXXXXX	$(\mathrm{R} / \mathrm{W})$ XXXXXXXX $X X X X X X X$		
0003F8н	BSDC				
0003FCH	$\begin{gathered} \text { BSRR } \\ \text { XXXXX) } \end{gathered}$	XX XXXXXXXX	$\begin{array}{cc}\text { (R) } \\ \text { XXXXXXXX } & \\ \text { XXXXXXXX }\end{array}$		
000400н	$\begin{gathered} \hline \text { ICR00 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR01 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03 } \quad(\mathrm{R} / \mathrm{W}) \\ ---11111 \end{gathered}$	Interruption controller
000404н	$\begin{gathered} \text { ICR04 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR05 (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR06 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \text { ICR07 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	

(Continued)

MB91110 Series

Address	Register				Internal resource
	+0	+1	+2	+3	
000408H	$\begin{gathered} \hline \text { ICR08 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR10 } \quad(\mathrm{R} / \mathrm{W}) \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR11 } \quad(\mathrm{R} / \mathrm{W}) \\ --11111 \end{gathered}$	Interruption controller
00040CH	$\begin{gathered} \hline \text { ICR12 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR13 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \hline \text { ICR14 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR15 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	
000410н	$\begin{gathered} \hline \text { ICR16 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR17 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR18 } \quad \text { (R/W) } \\ ---1111 \end{array}$	$\begin{gathered} \hline \text { ICR19 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	
000414н	$\begin{gathered} \hline \text { ICR20 } \quad \text { (R/W) } \\ --11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR21 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR22 } & \text { (R/W) } \\ ---1111 \end{array}$	$\begin{gathered} \hline \text { ICR23 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	
000418H	$\begin{gathered} \hline \text { ICR24 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \hline \text { ICR25 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR26 } & \text { (R/W) } \\ ---1111 \end{array}$	$\begin{array}{cc} \hline \text { ICR27 } \quad \text { (R/W) } \\ ---1111 \end{array}$	
00041CH	$\begin{array}{cc} \hline \text { ICR28 } & \text { (R/W) } \\ ---11111 \end{array}$	$\begin{gathered} \hline \text { ICR29 (R/W) } \\ ---11111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR30 } \quad \text { (R/W) } \\ ---11111 \end{array}$	$\begin{gathered} \hline \text { ICR31 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	
000420н	$\begin{gathered} \hline \text { ICR32 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR33 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR34 } & \text { (R/W) } \\ ---1111 \end{array}$	$\begin{gathered} \hline \text { ICR35 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	
000424н	$\begin{gathered} \hline \text { ICR36 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37 } \quad(R / W) \\ ---11111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR38 } \quad \text { (R/W) } \\ ---11111 \end{array}$	$\begin{gathered} \hline \text { ICR39 (R/W) } \\ ---11111 \end{gathered}$	
000428H	$\begin{gathered} \hline \text { ICR40 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR41 } \quad(R / W) \\ ---11111 \end{gathered}$	$\begin{array}{cc} \hline \text { ICR42 } & \text { (R/W) } \\ ---1111 \end{array}$	$\begin{gathered} \hline \text { ICR43 } \quad \text { (R/W) } \\ ---1111 \end{gathered}$	
00042CH	$\begin{gathered} \text { ICR44 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR45 (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR46 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR47 } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	
000430н	$\begin{array}{cc} \text { DICR } \quad(R / W) \\ ------0 \end{array}$	$\begin{gathered} \text { HRCL } \quad \text { (R/W) } \\ ---11111 \end{gathered}$	-	-	Delay interruption
$\begin{gathered} 000434 \mathrm{H} \\ \text { to } \\ 00047 \text { Con }^{2} \end{gathered}$					Reserved
000480н	$\begin{gathered} \text { RSRRWTCR (RW) } \\ 1 \text { XXXX - } 00 \end{gathered}$	$\begin{gathered} \hline \text { STCR } \quad \text { (R/W) } \\ 000111-- \end{gathered}$	$\begin{array}{ll} \hline \text { PDRR } & \text { (R/W) } \\ ---0 & 0 \end{array}$	$\begin{array}{cc} \hline \text { CTBR } \quad(W) \\ \text { XXXXXXXX } \end{array}$	Clock control area
000484н	$\begin{array}{cc} \hline \text { GCR } & (\mathrm{R} / \mathrm{W}) \\ 110011-1 \end{array}$	$\begin{array}{cc} \hline \text { WPR } \quad(W) \\ \text { XXXXXXXX } \end{array}$	-		
000488H	$\begin{array}{cc} \hline \text { PCTR } & \text { (R/W) } \\ 00--0--- \end{array}$	-			PLL control register
$\begin{gathered} 00048 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 0005 \mathrm{FC} \end{gathered}$	-				Reserved

(Continued)

MB91110 Series

(Continued)

Address	Register				Internal resource
	+0	+1	+2	+3	
000600 ${ }_{\text {H }}$	-	$\begin{array}{cc} \hline \text { DDR2 } & (W) \\ 00000000 \end{array}$	-	-	Data direction register
000604	-	$\begin{array}{cc} \text { DDR6 } & (W) \\ 00000000 \end{array}$	-	-	
000608н	$\begin{aligned} & \text { DDRB } \quad \text { (W) } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DDRA (W) } \\ & -000000- \end{aligned}$	-	$\begin{array}{cc} \text { DDR8 } & (W) \\ --0-000 \end{array}$	
00060CH	ASR1 00000000	$\begin{gathered} (\mathrm{W}) \\ 00000001 \end{gathered}$	AMR1 00000000	$\begin{gathered} (W) \\ 00000000 \end{gathered}$	External bus interface
000610	$\begin{gathered} \text { ASR2 } \\ 00000000 \end{gathered}$	$\begin{gathered} (W) \\ 00000010 \end{gathered}$	$\begin{gathered} \text { AMR2 } \\ 00000000 \end{gathered}$	$\begin{gathered} (W) \\ 00000000 \end{gathered}$	
000614	$\begin{gathered} \text { ASR3 } \\ 00000000 \end{gathered}$	$\begin{gathered} (W) \\ 00000011 \end{gathered}$	$\begin{gathered} \text { AMR3 } \\ 00000000 \end{gathered}$	$\begin{gathered} (W) \\ 00000000 \end{gathered}$	
000618	$\begin{gathered} \text { ASR4 } \\ 00000000 \end{gathered}$	$\begin{gathered} (W) \\ 00000100 \end{gathered}$	AMR4 00000000	$\begin{gathered} (W) \\ 00000000 \end{gathered}$	
00061CH	$\begin{gathered} \text { ASR5 } \\ 00000000 \end{gathered}$	$\begin{gathered} (W) \\ 00000101 \end{gathered}$	AMR5 00000000	(W) 00000000	
000620н	$\begin{array}{cc} \hline \text { AMDO } \quad(\mathrm{R} / \mathrm{W}) \\ ---00111 \end{array}$	$\begin{array}{cc} \hline \text { AMD1 } \quad \text { (R/W) } \\ 0--00000 \end{array}$	$\begin{gathered} \hline \text { AMD32 (R/W) } \\ 00000000 \end{gathered}$	$\begin{array}{cc} \hline \text { AMD4 } \quad \text { (R/W) } \\ 0--00000 \end{array}$	
000624	$\begin{gathered} \text { AMD5 (R/W) } \\ 0--00000 \end{gathered}$	$\begin{array}{cc} \hline \text { DSCR } & \text { (W) } \\ 00000000 \end{array}$	$\begin{gathered} \text { RFCR } \\ -- \text { XXXXXX } \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ 0---0000 \end{gathered}$	
000628н	$\begin{aligned} & \hline \text { EPCRO } \\ & ----1100 \end{aligned}$	$\begin{gathered} \text { (W) } \\ -1111111 \end{gathered}$	EPCR1	$\begin{gathered} \text { (W) } \\ 11111111 \end{gathered}$	
00062CH	$\begin{gathered} \text { DMCR4 } \\ 00000000 \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ 0000000- \end{gathered}$	$\begin{gathered} \text { DMCR5 } \\ 00000000 \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ 0000000- \end{gathered}$	
$\begin{gathered} \hline 000630_{\mathrm{H}} \\ \text { to } \\ 0007 \mathrm{~F} 8 \mathrm{H} \end{gathered}$			-		Reserved
0007FCH			$\begin{gathered} \text { LER } \quad \text { (W) } \\ ----000 \end{gathered}$	$\begin{array}{cc} \text { MODR } \quad(\mathrm{W}) \\ \text { XXXXXXXX } \end{array}$	"Little endian" register Mode register

Note : Do not execute RMW instructions to registers with write-only bits.
RMW instruction (RMW : Read / Modify / Write)

AND	Rj, @Ri	OR	$R j, ~ @ R i$	EOR	$R j, ~ @ R i$
ANDH	$R j, ~ @ R i$	ORH	$R j$, @Ri	EORH	$R j$, @Ri
ANDB	$R j, ~ @ R i$	ORB	$R j$, @Ri	EORB	$R j$, @Ri
BANDL	\#u4, @Ri	BORL \#u4, @Ri	BEORL	\#u4, @Ri	
BANDH	\#u4, @Ri	BORH \#u4, @Ri	BEORH	\#u4, @Ri	

Data in areas with "-" or reserved ones is undecided.

MB91110 Series

- INTERRUPTION VECTOR

Interruption factor and allocation of interruption vectors / interruption control registers are described in the interruption vector table.

Interruption source	Interruption number		Interruption level ${ }^{\text {¹ }}$	Offset	Interruption vector address to TBR of default ${ }^{2}$
	Decimal	Hexadecimal			
Reset	0	00	-	3FCH	000FFFFCC
System reservation	1	01	-	3F8H	000FFFF8 ${ }_{\text {н }}$
System reservation	2	02	-	3F4н	000FFFF4 ${ }_{\text {н }}$
System reservation	3	03	-	3FOH	000FFFFOH
System reservation	4	04	-	ЗЕСн	000FFFECH
System reservation	5	05	-	3Е8н	000FFFE8н
System reservation	6	06	-	3E4H	000FFFE4 ${ }_{\text {¢ }}$
Coprocessor absence trap	7	07	-	3ЕОн	000FFFEOH
Coprocessor error trap	8	08	-	3DCH	000 FFFDC ${ }_{\text {H }}$
INTE instruction	9	09	4 fixed	3D8H	000FFFD8н
System reservation	10	0A	-	3D4H	000FFFD4
System reservation	11	OB	-	3D0н	000FFFDOн
Step trace trap	12	OC	4 fixed	$3 \mathrm{CCH}_{4}$	000 FFFCCH
System reservation	13	OD	-	3С8н	000FFFC8
Exceptions to undefined instructions	14	OE	-	3С4н	000FFFC4
NMI request	15	OF	15 (FH) fixed	3С0н	000FFFCOH
System reservation	16	10	ICR00	3ВС	$000 \mathrm{FFFBC}{ }_{\text {н }}$
System reservation	17	11	ICR01	3B8H	000FFFB8н
External interruption 0	18	12	ICR02	3В4н	000FFFB4 ${ }_{\text {¢ }}$
External interruption 1	19	13	ICR03	3B0н	000FFFBOH
External interruption 2	20	14	ICR04	ЗАС	000 FFFACH
External interruption 3	21	15	ICR05	ЗА8н	000FFFA8н
External interruption 4	22	16	ICR06	3А4 4	000FFFA4
External interruption 5	23	17	ICR07	3АО ${ }^{\text {¢ }}$	000FFFA0н
External interruption 6	24	18	ICR08	39С ${ }^{\text {¢ }}$	000FFF9CH
External interruption 7	25	19	ICR09	398н	000FFF98
System reservation	26	1A	ICR10	394 ${ }^{\text {¢ }}$	000FFF94н
UART reception completion	27	1B	ICR11	390н	000FFF90н
System reservation	28	1 C	ICR12	38 CH	$000 \mathrm{FFF} 8 \mathrm{CH}_{\text {}}$
System reservation	29	1D	ICR13	388н	000FFF88
UART transmission completion	30	1E	ICR14	384н	000FFF84н
System reservation	31	1F	ICR15	380н	000FFF80н

(Continued)

MB91110 Series

Interruption source	Interruption number		Interruption level "1	Offset	Interruption vector address to TBR of default ${ }^{\text {² }}$
	Decimal	Hexadecimal			
System reservation	32	20	ICR16	$37 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF7} \mathrm{C}_{\text {н }}$
DMAC0 (end, error)	33	21	ICR17	378н	000FFF78
DMAC1 (end, error)	34	22	ICR18	374	000FFF74
DMAC2 (end, error)	35	23	ICR19	370 ${ }^{\text {¢ }}$	000FFF70н
DMAC3 (end, error)	36	24	ICR20	$36 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF6} \mathrm{CH}_{\text {}}$
DMAC4 (end, error)	37	25	ICR21	368 H	000FFF68
System reservation	38	26	ICR22	364	000FFF64
System reservation	39	27	ICR23	360 н	000FFF60н
System reservation	40	28	ICR24	35 CH	000FFF5Сн
A/D sequential conversion type	41	29	ICR25	358 ${ }^{\text {+ }}$	000FFF58н
Reload timer 0	42	2A	ICR26	354	000FFF54н
Reload timer 1	43	2B	ICR27	350н	000FFF50н
16-bit PPG timer 0	44	2C	ICR28	34 CH	000FFF4C ${ }_{\text {H }}$
16-bit PPG timer 1	45	2D	ICR29	348H	000FFF48н
16-bit PPG timer 2	46	2E	ICR30	344 н	000FFF44 ${ }_{\text {¢ }}$
16-bit PPG timer 3	47	2 F	ICR31	340 H	000FFF40н
16-bit PPG timer 4	48	30	ICR32	33С	000FFF3C ${ }_{\text {н }}$
16-bit PPG timer 5	49	31	ICR33	338 ${ }^{\text {+ }}$	000FFF38н
System reservation	50	32	ICR34	334	000FFF34
System reservation	51	33	ICR35	330н	000FFF30н
System reservation	52	34	ICR36	32 CH	000FFF2C ${ }_{\text {н }}$
System reservation	53	35	ICR37	328н	000FFF28н
System reservation	54	36	ICR38	324 н	000FFF24н
System reservation	55	37	ICR39	320н	000FFF20н
System reservation	56	38	ICR40	$31 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 1 \mathrm{C}_{\text {н }}$
System reservation	57	39	ICR41	318 ${ }^{\text {+ }}$	000FFF18 ${ }_{\text {н }}$
System reservation	58	3A	ICR42	314 H	000FFF14
System reservation	59	3B	ICR43	310н	000FFF10н
System reservation	60	3C	ICR44	30 CH	000 FFFOCH
System reservation	61	3D	ICR45	308н	000FFF08н
System reservation	62	3E	ICR46	304 H	000FFF04
Delay interruption factor bit	63	3F	ICR47	300 H	000FFFOOH
System reservation (used under REALOS) *3	64	40	-	2 FCH	000FFEFCH

(Continued)

MB91110 Series

(Continued)

Interruption source	Interruption number		Interruption level ${ }^{11}$	Offset	Interruption vector address to TBR of default ${ }^{\text {2 }}$
	Decimal	Hexadecimal			
System reservation (used under REALOS) *3	65	41	-	2F8н	000FFEF8н
Used under INT instruction	$\begin{gathered} 66 \\ \text { to } \\ 255 \end{gathered}$	$\begin{array}{r} 42 \\ \text { to } \\ \text { FF } \end{array}$	-	$\begin{gathered} 2 F 4 \mathrm{H} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	000FFEF4 4 to 000 FFDOOH

*1: ICR sets the interruption level for each interruption request using the register built into the interruption controller.
ICR is prepared in accordance with each interruption request.
*2 : TBR is the register that indicates the starting address of the vector table for EIT.
Addresses with added offset values that are specified per TBR and EIT factor will be the vector addresses.
*3: REALOS OS/FR uses 0X40, 0X41 interruptions for system codes.

Reference :

The vector area for EIT is 1 KB in accordance with the address shown by TBR.
The size per vector is 4 bytes, and the relationship between the vector numbers and their addresses is shown as follows.
vctadr $=$ TBR + vctofs

$$
=\mathrm{TBR}+\left(3 \mathrm{FC}_{H}-4 \times \mathrm{vct}\right)
$$

vctadr : vector address vctofs : vector offset vct: vector number

MB91110 Series

- PERIPHERAL RESOURCES

1. I/O Port

MB91110 series can be used as the I/O port when settings for resources that handle each pin do not to use the pins for input/output.

- Block diagram

- I/O Port Registers

I/O port is composed of the Port Data Register (PDR) and Data Direction Register (DDR) .

- In cases where the input mode is DDR = " 0 "

For PDR reading : Level of external pins to be handled is read out.
For PDR writing : Set value is written in PDR.

- In cases where the output mode is DDR = " 1 "

For PDR reading : PDR value is read out.
For PDR writing : Set value is written in PDR and the PDR value is simultaneously output to the externally handled pin.

MB91110 Series

2. Port Data Register (PDR)

Port Data Register (PDR2-I) is the input/output data register for the I/O port.
Input/output control is carried out by the handled data direction register (DDR2-I) .

- Port Data Register (PDR)

PDR2	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000001H	P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXX	R/W
PDR6	7	6	5	4	3	2	1	0	Initial value ХХХХХХХХХв	Access R/W
Address: 000005H	P67	P66	P65	P64	P63	P62	P61	P60		
PDR8	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00000B ${ }_{\text {H }}$	-	-	P85	-	-	P82	P81	P80	--X- - XXX	R/W
PDRA	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000009H	-	PA6	PA5	PA4	PA3	PA2	PA1	-	- XXXXXX- в	R/W
PDRB	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000008H	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	ХХХХХХХХ ${ }_{\text {B }}$	R/W
PDRE	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000012н	-	-	-	-	РЕ3	PE2	PE1	PE0	--- - XXXX ${ }_{\text {B }}$	R/W
PDRF	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000013H	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	XXXXXXXX	R/W
PDRG	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000014	-	-	PG5	PG4	PG3	PG2	PG1	PG0	- - ХХХХХХХв	R/W
PDRH	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000015H	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0	ХХХХХХХХХв	R/W
PDRI	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000016H	PI7	PI6	PI5	PI4	Pl3	P12	P11	PIO	XXXXXXXX	R/W

MB91110 Series

3. Data Direction Register (DDR)

The Data Direction Register (DDR2-I) controls the input/output direction of the I/O port per bit. 0 is used for input and 1 is used to execute output control.

- Data Direction Register (DDR)

DDR2	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000601H	P27	P26	P25	P24	P23	P22	P21	P20	00000000в	W
DDR6	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000605	P67	P66	P65	P64	P63	P62	P61	P60	00000000в	W
DDR8	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00060Вн	-	-	P85	-	-	P82	P81	P80	- - 0--000в	W
DDRA	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000609н	-	PA6	PA5	PA4	PA3	PA2	PA1	-	- 000000 -в	W
DDRB	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000608н	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	00000000в	W
DDRE	7	6	5	4	3	2	1	0	Initial value	Access
Address : 0000D2н	-	-	-	-	РЕ3	PE2	PE1	PE0	- - 0000в	W
DDRF	7	6	5	4	3	2	1	0	Initial value	Access
Address : 0000D3H	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	00000000в	W
DDRG	7	6	5	4	3	2	1	0	Initial value	Access
Address: 0000D4H	-	-	PG5	PG4	PG3	PG2	PG1	PG0	--000000в	W
DDRH	7	6	5	4	3	2	1	0	Initial value	Access
Address : 0000D5	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PHO	00000000в	W
DDRI	7	6	5	4	3	2	1	0	Initial value	Access
Address: 0000D6н	P17	Pl6	P15	P14	P13	P12	P11	PIO	00000000в	W

MB91110 Series

4. Instruction Cache

The instruction cache is a temporary storage memory. In the event that the instruction codes are accessed from a low speed external memory, it holds the accessed codes internally, and is used to increase the access speed for all subsequent accesses.
Direct read or write access can not be done by instruction cache or instruction cache tag using software.

- Cacheable area of the instruction cache

Instruction cache allows all space to become a cacheable area.

- Built-in ROM shall also be cacheable for products featuring built-in ROMs.
- It is assumed that instruction access is not carried out to spaces other than external areas and built-in ROMs. Thus, even if an instruction access is made, it would be cacheable to the control register in the I/O area.
- Even though details of the external memory are updated by DMA transfer, it is not coherent with the cache details. In this case, coherency should be established by flushing the cache.

- Instruction cache configuration

- Basic instruction length of FR series : 2 bytes
- Block layout : 2-way set associative type
- Block 1 way is configured of 32 blocks.
1 block is 16 bytes ($=4$ sub blocks)
1 sub block is 4 bytes ($=1$ bus access unit)

The instruction cache configuration is shown in the following figure.
Instruction Cache Configuration

Way 1

Block 0

Block 31

Way 2

Block 0

Block 31

MB91110 Series

5. Instruction Cache Control Register (ICHCR)

The Instruction Cache Control Register (ICHCR) controls the operation of the instruction cache. Writing to ICHCR may effect the cache operation of instructions to be retrieved within the next three cycles.

- Instruction Cache Control Register (ICHCR)

Instruction Cache Control Register (ICHCR) is shared for use by ways 1 and 2.

Address : 0000 03E7H	07	06	05	04	03	02	01	00	Initial value Access - - 000000 R/W
	-	-	GBLK	ALFL	EOLK	ELKR	FLSH	ENAB	
Global lock Auto lock fail Entry auto lock Entry lock release Flush Enable									

MB91110 Series

6. Clock Generator (Low power consumption mechanism)

The clock generation area is a module with the following functions.

- CPU clock generation (including gear function)
- Peripheral clock generation (including gear function)
- Reset generation and holding factors
- Standby function (including hardware standby)
- Restraining DMA request
- PLL (Phase Locked Loop) is built in

- Register list

MB91110 Series

- Block diagram

MB91110 Series

7. Bus Interface Outline

The bus interface controls the interface with external memory and external I/O.

- Bus Interface Characteristics
- 24-bit (16 MB) address output
- 6 individual banks using chip selection function

Random positional setting is possible on the logical address space at minimum 64-KB units.
Total $16 \mathrm{MB} \times 6$ areas can be set using the address pin and chip selection pin.

- 16/8-bit bus width can be set per chip selection area.
- Insertion of programmable "automatic memory wait" (maximum of 7 cycles)
- Supports DRAM interface

3 types of DRAM interface
Double CAS DRAM (Normal DRAM I/F)
Single CAS DRAM
Hyper DRAM
2-bank individual control (control signal i.e. RAS and CAS)
DRAM can be selected from 2CAS/1WE or 1CAS/2WE.
Supports high-speed page mode
Supports CBR / self refresh
Programmable corrugation

- Unused addresses / data pins can be used as I/O ports.
- Supports "little endian" mode
- Using clock doubler : Internal 50 MHz , external bus 25 MHz operation

- Chip Selection Area

A total of six types of chip selection areas are prepared for the bus interface. The position of each area can be randomly arranged per 64 KB at least using area selection registers (ASR1 to 5) and area mask registers (AMR1 to 5) in an area of 4 GB . In the event that access to an external bus is attempted in areas that are specified by those registers, the supported chip selection signals (CS0 to CS5) become activated to "L". Such pins other than $\overline{\mathrm{CSO}}$ are deactivated to " H " when reset.

Note : The area 0 is allocated to space outside the area specified by ASR1 to ASR5. External areas other than 0001 0000н to 0005 FFFFн are deemed area 0 on resetting.

MB91110 Series

- Interface

The bus interface has the following interface types.

- Normal bus interface
- DRAM interface

These interfaces can only be used in predetermined areas. The following table shows each chip selection area and the usable interface functions. Which interface is to be used is selected in the Area Mode Register (AMD) . If no selection is made, it defaults to the normal bus interface.

Chip Selection Area and Selectable Bus Interfaces

Areas	Selectable bus interface			Remarks
	Normal bus	Time division	DRAM	
0	O	-	-	On resetting
1	0	-	-	
2	0	-	-	
3	O	-	-	
4	O	-	O	
5	O	-	O	

- Block Diagram

MB91110 Series

- Register List

Address	--.....-	---.---	.--	-----	Initial value		Access
$00060 \mathrm{CH}_{\mathrm{H}}$ 00060 Ен	ASR1 (Area Select Reg. 1)		AMR1 (Area Mode Reg. 1)		00000000 00000000	$\begin{aligned} & 00000001 \mathrm{~B} \\ & 00000000 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
$\mathrm{O}_{0} 0061 \mathrm{H}_{\mathrm{H}}$ 000612	ASR2 (Area Select Reg. 2)		AMR2 (Area Mode Reg. 2)		00000000 00000000	$\begin{aligned} & 00000010_{\mathrm{B}} \\ & 0000000 \mathrm{~B}_{\mathrm{B}} \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
000614H 000616	ASR3 (Area Select Reg. 3)		AMR3 (Area Mode Reg. 3)		00000000 00000000	$\begin{aligned} & 00000011 \text { в } \\ & 00000000 \text { в } \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
000618 00061 Ан	ASR4 (Area Select Reg. 4)		AMR4 (Area Mode Reg. 4)		00000000 00000000	$\begin{aligned} & 00000100 \text { в } \\ & 00000000 \text { в } \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
00061 C $_{\mathrm{H}}$ 00061 Ен	ASR5 (Area Select Reg. 5)		AMR5 (Area Mode Reg. 5)		00000000 00000000	$\begin{aligned} & 00000101 \text { в } \\ & 00000000 \text { в } \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
$\begin{aligned} & 00062 \mathrm{H} \\ & 000622 \mathrm{H} \end{aligned}$	AMD0 *1	AMD1*1	AMD32 *1	AMD4 *1	$\begin{aligned} & --00111 \\ & 00000000 \end{aligned}$	$\begin{aligned} & 0-00000 \text { в } \\ & 0--00000 \text { в } \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
$\begin{aligned} & 000624 \mathrm{H} \\ & 000626 \mathrm{H} \end{aligned}$	AMD5 *1	DSCR *2	RFCR (Re	Register)	$\begin{aligned} & 0--00000 \\ & --X X X X X X \end{aligned}$	$\begin{aligned} & 00000000 \text { в } \\ & 0--0000 \text { в } \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
000628 00062Ан	EPCRO (External Pin Control 0)		EPCR1 (External Pin Control 1)		----1100	$\begin{gathered} -0000000 \text { в } \\ 11111111 \text { в } \end{gathered}$	$\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$
$00062 \mathrm{CH}_{\mathrm{H}}$ 00062Ен	DMCR4 (DRAM Control Reg. 4)		DMCR5 (DRAM Control Reg. 5)		00000000 00000000	$\begin{aligned} & 0000000-\text { в в } \\ & 0000000-\text { в } \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
0007 FCH			LER *3	MODR *4	---- 00	XXXXXXXX	w

[^0]
MB91110 Series

8. 16-bit Reload Timer

The 16 -bit timer is composed of a 16-bit down counter, 16 -bit reload register, a pre-scalar for internal count clock preparation and a control register. Selection of the input clock can be made from three types of internal clock (machine clocks with 2, 8 and 32 cycles) and an external clock are selectable for input clock.

- Characteristics of the 16 -bit reload timer

The Pin Output (TO) outputs a toggle waveform whenever underflow is generated in reload mode, and outputs rectangular waves indicating that it is counting in the case of one shot mode.
Pin Input (TI) can be used for event input in the case of external event count mode, trigger input or gate input for internal clock mode.
If the external event count function is used as the reload mode, it can be used as the cycle device for the external clock.
In this type, a 2-channel timer is built-in.
Channel 0 of the reload timer can start up DMA transfer using the interruption request signal.
The DMA controller clears the interruption flag of the reload timer at the same time as receiving the transfer request.
The TO output from channel 0 for the reload timer is connected to the A/D converter inside the LSI. Thus, A/D conversion can be started on a cycle set at the reload register.

MB91110 Series

- Block Diagram

- Register List

MB91110 Series

9. PPG Timer

The PPG timer can output pulses that are synchronized with soft triggers or externally. Also, the cycle and duty of the output pulses can be changed randomly by replacing the two 16 -bit register values. In this type, there are 6 built-in channels with this function.

- PPG timer function

The PPG timer has two functions as follows.

- PWM function

This can be synchronized to the trigger and is programmable to output pulses while rewriting the above register values. It can also be used as a D/A converter by using an additional circuit.

- One-shot function

This detects the edge of the trigger input and outputs a single pulse.

- Block Diagram

MB91110 Series

- Register List
- Cycle setting register (PCSR) Address

Initial value
Access
000046 00004Ен 000056 00005Ен \qquad XXXXXXXX XXXXXXXXв w 000066н 00006Ен

- Duty setting register (PDUT)

Address
Initial value
Access
000048
000050 H
000058 000060н

XXXXXXXX XXXXXXXX
w
000068
000070н

- Control/status register (PCNH/PCNL)

Address

Initial value
Access
00004Ан 000052H 00005 Ан 000062 00006Ан 000072н

MB91110 Series

10. External Interruption/NMI Control Area

The external interruption / NMI control area controls the external interruption requests to be input to the $\overline{\mathrm{NMI}}$ and INT0 to INT7. "H" or "L" and "rising edge" or "falling edge" can be selected as the requested detection level (except for NMI). Also, four requests from INT0 to INT3 can be used as the DMA request.

- Block diagram

- Register list

- External interruption permission register (ENIR)

Address	7	6	5	4	3	2	1	0	Initial value Access
000095	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	00000000в R/W

- External interruption factors register (EIRR)

- Request level setting register (ELVR)

bit
000099н

7	6	5	4	3	2	1	0		
LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000 B	R/W

MB91110 Series

11. Delay Interruption Modules

This is a module to generate interruptions to switch tasks. This module can be used with software to generate / cancel interruption requests to the CPU.

- Block diagram

- Register list

$\begin{gathered} \text { Address } \\ \text { 000430н } \end{gathered}$	bit	7	6	5	4	3	2	1	0	Initial value	Access
		-	-	-	-	-	-	-	DLYI	------ 0 -	R/W

MB91110 Series

12. Interruption Controller

The interruption controller carries out interruption reception and arbitration.

- Hardware configuration of the interruption controller

This module is configured for the following items.

- ICR register
- Interruption priority judgement circuit
- Interruption level, interruption number (vector) generation area
- Cancellation request generation area for HOLD request
- Major interruption controller functions

This module has the following functions.

- Detection of NMI request / interruption request
- Priority grade judgement (depending on the level and number)
- Transferring interruption level of factors for the judgement results (to CPU)
- Transferring interruption number of factors for the judgement results (to CPU)
- Recovery instruction from stop mode by generating NMI / interruption
- Cancellation of HOLD request to the bus master

MB91110 Series

- Block Diagram

*1 : DLYI indicates delay interruption. (Refer to the chapter on delay interruption module for details.)
*2 : INTO is the wake-up signal to the clock control area in case of sleep or stop.
*3 : HLDCAN is the bus vacation request signal to bus masters other than the CPU.

Address	bit 7	6	5	4	3	2	1	0		Initial value	Acces
000400н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICROO	-- 11111	R/W
000401H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR01	-- 11111	R/W
000402н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR02	-- 11111	R/W
000403н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR03	-- 11111	R/W
000404н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR04	-- 11111	R/W
000405н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR05	-- 11111	R/W
000406н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR06	---11111	R/W
000407н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR07	-- 11111	R/W
000408н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR08	-- 11111	R/W
000409н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR09	---11111	R/W
00040Ан	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR10	-- 11111	R/W
00040Вн	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR11	-- 11111	R/W
$00040 \mathrm{CH}_{\text {H }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR12	-- 11111	R/W
00040D	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR13	-- 11111	R/W
00040Ен	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR14	-- 11111	R/W
00040Fн	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR15	-- 11111	R/W
000410н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR16	-- 11111	R/W
000411н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR17	-- 11111	R/W
000412н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR18	-- 11111	R/W
000413н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR19	-- 11111	R/W
000414	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR20	-- 11111	R/W
000415 ${ }_{\text {H }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR21	-- 11111	R/W
000416н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR22	-- 11111	R/W
000417 ${ }^{\text {H }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR23	-- 11111	R/W
000418н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR24	-- 11111	R/W
000419 ${ }_{\text {н }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR25	-- 11111	R/W
00041Ан	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR26	-- 11111	R/W
00041Вн	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR27	-- 11111	R/W
$00041 \mathrm{CH}_{\text {H }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR28	-- 11111	R/W
00041的	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR29	-- 11111	R/W
00041Ен	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR30	--- 11111	R/W
00041 FH	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR31	-- 11111	R/W
000420н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR32	-- 11111	R/W
000421H	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR33	-- 11111	R/W
000422н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR34	-- 11111	R/W
000423н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR35	-- 11111	R/W
000424	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR36	-- 11111	R/W
000425н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR37	-- 11111	R/W
000426н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR38	-- 11111	R/W
000427 ${ }_{\text {H }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR39	-- 11111	R/W
000428н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR40	-- 11111	R/W
000429н	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR41	-- 11111	R/W
00042Aн	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR42	-- 11111	R/W
00042Вн	-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0	ICR43	-- 11111	R/W
$00042 \mathrm{CH}_{\text {H }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR44	-- 11111	R/W
00042D ${ }_{\text {н }}$	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR45	-- 11111	R/W
00042Ен	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR46	-- 11111	R/W
00042F	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO	ICR47	-- 11111	R/W
				R	R/W	R/W	R/W	R/W			
000431H	-	-	-	LVL4	LVL3	LVL2	LVL1	LVL0	HRCL	-- 11111	R/W
				R	R/W	R/W	R/W	R/W			

MB91110 Series

13. Interruption Control Register (ICR)

This function is set up per interruption input and sets the interruption level of interruption requests to be handled.

- Register list

[bit 4 to 0] ICR4 to 0

The interruption level of the interruption requests that are handled is specified by the interruption level setting bit. In cases where the interruption level that is set in this register is the same as or more than the level mask value that is set (has been set) in the ILM register of the CPU, the interruption request is masked at the CPU side. It is initialized to 11111в on resetting. The settable interruption level setting bit and interruption level are shown in following Table.

Interruption Level Setting Bit and Interruption Level

ICR4	ICR3	ICR2	ICR1	ICRO	Interruption level		
0	0	0	0	0	0	System reservation	
0	1	1	1	0	14		
0	1	1	1	1	15	NMI	
1	0	0	0	0	16	Maximum settable level	
1	0	0	0	1	17	(High)	
1	0	0	1	0	18		
1	0	0	1	1	19		
1	0	1	0	0	20		
1	0	1	0	1	21		
1	0	1	1	0	22		
1	0	1	1	1	23		
1	1	0	0	0	24		
1	1	0	0	1	25		
1	1	0	1	0	26		
1	1	0	1	1	27		
1	1	1	0	0	28		
1	1	1	0	1	29		
1	1	1	1	0	30		(Low)
1	1	1	1	1	31	Interruption is prohibited	

Note: ICR 4 is fixed as " 1 " and can not be written as " 0 ".

MB91110 Series

14. 10-bit A/D Converter

The A/D converter is the module that converts analog input voltages to a digital value.

- Characteristics of A/D Converter
- Minimum converting time : $5.6 \mu \mathrm{~s} /$ channel
- Sample \& hold circuit is built-in.
- Resolution : 10 bits
- Selection can be made for analog input from 8 channels.

Single conversion mode : 1 channel is selected for conversion
Scan conversion mode : Converts multiple number of consecutive channels. Maximum 8 channels are programmable.
Consecutive conversion mode : Repeatedly converts the specified channel.
Suspension / conversion mode : Suspends after converting 1 channel and waits until the next one is started up (synchronization for starting conversion is possible)

- Initiation of DMA transfer by interruption is possible.
- Initiation factor can be selected from software, external trigger (falling edge) or reload timer (rising edge).

- Block Diagram

MB91110 Series

- Register List

- Control Status Register (ADCS)

Address bit
00003 Ан

15	14	13	12	11	10	9	8
BUSY	INT	INTE	PAUS	STS1	STS0	STRT	-

Initial value Access
00000000 в R/W
bit
00003Bн

7	6	5	4	3	2	1	0
MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0

- Data Register (ADCR)

Address
000038н
bit

bit
000039н

7	6	5	4	3	2	1	0
7	6	5	4	3	2	1	0

MB91110 Series

15. UART

UART is the serial I/O port for carrying out asynchronous (start-stop synchronization) or CLK synchronous communication.

- Characteristics of UART

- FDX double buffer
- Asynchronous (start-stop synchronization) and CLK synchronous communication are possible.
- Supports multi processor mode
- Dedicated baud rate generator is built-in.
- Free baud rate can be set using an external clock.
- Error detection function (parity, framing, overrun)
- Transfer signal is NRZ code
- Initiation of DMA transfer is possible by interruption.

MB91110 Series

- Block Diagram

MB91110 Series

- Register List

- Serial Mode Register (SMR)

Address	7	6	5	4	3	2	1	0	Initial value	Access
000023н	MD1	MDO	CS2	CS1	CSO	-	SCKE	SOE	00000-00в	R/W

- Serial Control Register (SCR)

Seria	15	14	13	12	11	10	9	8	Initial value	Access
000022н	PEN	P	SBL	CL	A/D	REC	RXE	TXE	00000100 ${ }_{\text {B }}$	R/W

- Serial Input Data Register/Serial Output Data Register (SIDR/SODR)

000021H
bit

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

- Serial Status Register (SSR)

	15	14	13	12	11	10	9	8
000020н	PE	ORE	FRE	RDRF	TDRE	-	RIE	TIE

- Communication Pre-scalar Control Register (CDCR)

000025 bit

7	6	5	4	3	2	1	0
MD	-	-	DIV4	DIV3	DIV2	DIV1	DIV0

Initial value Access
XXXXXXXX R/W

Initial value Access 00001-00в R/W

Initial value Access
0--11111B R/W

MB91110 Series

16. DMA Controller (DMAC)

The DMA controller is the module to realize Direct Memory Access (DMA) transfers with FR 30 series devices. DMA transfers controlled by this module enable quick and direct transfer of all data without using the CPU and thus system performance is increased.

- Hardware Configuration of DMA Controller

This module is mainly configured of the following items.

- Internal I/O access control circuit
- 32-bit address counters (possible reload specification : 10)
- 16-bit transfer number counters (possible reload specification : 5)
- External transfer request input pin : DREQ0, DREQ1, DREQ2
- External transfer request reception output pin : DACK0, DACK1, DACK2 (external bus synchronization)
- External transfer termination output pin : DEOPO, DEOP1, DEOP2 (external bus synchronization)

- Major Function of DMA Controller

There are the following functions for data transfer using this module.

- Independent data transfer of a number of channels is possible (5 ch)
- Priority ranking amongst channels

Fixed ranking (ch. $0>\mathrm{ch} .1>\mathrm{ch} .2>\mathrm{ch} .3>\mathrm{ch} .4$)
Ranking between channel 0 and 1 can be reversed.

- Transfer request

Dedicated external pin input (Edge detection / level detection selection are possible for channels 0 to 2 only.)
Built-in peripheral request (interruption requests are shared. External interruption is included.)
Software request (register writing)

- Transfer sequence

Consecutive / burst transfer
Step transfer / block transfer (Maximum 16 words are settable.)

- Addressing mode : 32-bit full address specification (increase / decrease / fix)
- Data types : Byte, half word, word length
- Single shot or reload can be selected.

MB91110 Series

- Block Diagram

MB91110 Series

- Register List

Address	bit 31 0			Access R/W
000200н	ch. 0 Control/status register	DMACSO		
000204H	ch. 0 Addressing/transfer counting register	DMACCO	----XXXXXXXX-XXXB xxxxxxxx xxxxxxxx	R/W
000208H	ch. 0 Transfer originator address register	DMASAO	XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX	R/W
00020Сн	ch. 0 Destination address register	DMADA0	x XXXXXXXX XXXXXXXX	R/W
000210н	ch. 1 Control/status register	DMACS1		R/W
000214	ch. 1 Addressing/transfer counting register	DMACC1	----XXXXXXXX-XXX XXXXXXXX XXXXXXXX	R/W
000218H	ch. 1 Transfer originator address register	DMASA1	x $x \times X X X X X X X X X X X X X$ в XXXXXXXX XXXXXXXX	R/W
	ch. 1 Destination address register	DMADA1	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
000220н	ch. 2 Control/status register	DMACS2		R/W
000224H	ch. 2 Addressing/transfer counting register	DMACC2	----XXXX XXXX-XXXB XXXXXXXX XXXXXXXX	R/W
000228H	ch. 2 Transfer originator address register	DMASA2	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
00022Cн	ch. 2 Destination address register	DMADA2	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
000230н	ch. 3 Control/status register	DMACS3		R/W
000234	ch. 3 Addressing/transfer counting register	DMACC3	----xxxx $x x x x-x x$ ® $_{B}$ XXXXXXXX XXXXXXXX	R/W
000238 ${ }^{\text {H }}$	ch. 3 Transfer originator address register	DMASA3	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
00023Cн	ch. 3 Destination address register	DMADA3	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
000240н	ch. 4 Control/status register	DMACS4		R/W
000244	ch. 4 Addressing/transfer counting register	DMACC4	----XXXX XXXX-XXXB XXXXXXXX XXXXXXXX	R/W
000248	ch. 4 Transfer originator address register	DMASA4	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
00024Cн	ch. 4 Destination address register	DMADA4	xxxxxxxx xxxxxxxx XXXXXXXX XXXXXXXX	R/W
000250н	Overall control register	DMACR		R/W

MB91110 Series

17. Bit Search Module

Bit search module searches for 0,1 or change points on data that has been written in the input register, and returns the detected bit position.

- Block Diagram

- Registers List

18. I-RAM

This type has 16 KB of built-in I-RAM (RAM dedicated for instructions). Efficient processing becomes possible by pre-arranging interruption processing programs and such like in this area. Writing on I-RAM is possible via the data bus and is used in case of debugging.

- Register List

IRMC Address: 0003EFн	7	6	5	4	3	2	1	0	Initial value Access
	-	-	-	-	-	-	-	IRMD	----0 R/W

MB91110 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=\mathrm{AVRL}=0 \mathrm{~V})$

Parameter	Symbol	Rating		Unit	Remarks
		Min.	Max.		
Power voltage	Vcc5	Vcc3-0.3	Vss +6.0	V	*1
	Vcc3	Vss - 0.3	Vss +3.6	V	*1
Analog power voltage	AVcc	Vss - 0.3	Vss +3.6	V	*2
Standard analog voltage	AVRH	Vss - 0.3	Vss +3.6	V	*2
Input voltage	V_{1}	Vss - 0.3	Vcc5 +0.3	V	
Analog pin input voltage	$V_{\text {IA }}$	Vss - 0.3	AV cc +0.3	V	
Output voltage	Vo	Vss - 0.3	Vcc5 + 0.3	V	
Maximum "L" level output current	loL	-	10	mA	*3
Average "L" level output current	lolav	-	4	mA	* 4
Maximum total "L" level output current	Eloı	-	100	mA	
Average "L" level total output current	Elolav	-	50	mA	*5
Maximum "H" level output current	Іон	-	-10	mA	*3
Average "H" level output current	lohav	-	-4	mA	* 4
Maximum total " H " level output current	Σ loh	-	-50	mA	
Average " H " level total output current	Elohav	-	-20	mA	*5
Electricity consumption	PD	-	650	mW	
Operating temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : Vcc3/Vcc5 must not be lower than $\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$.
*2 : Care must be taken that this does not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$ when the power is turned on.
*3 : Peak value of the pin concerned is regulated as the maximum output current.
*4 : Average current within 100 ms flowing in the pin concerned is regulated as the average output current.
*5 : Average current within 100 ms flowing in all pins concerned is regulated as the average total output current.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91110 Series

2. Recommended Operating Conditions

$$
(\mathrm{Vss}=\mathrm{AV} s \mathrm{ss}=\mathrm{AVRL}=0 \mathrm{~V})
$$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power voltage	Vcc5	4.5	5.5	V	Keeping RAM status in the case of normal operations / stopping
	Vcc3	3.135	3.465		
Analog power voltage	AVcc	Vss-3.0	Vss +3.465	V	
Standard analog voltage	AVRH	AVss	AVcc	V	
Operating temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91110 Series

3. DC Characteristics

$\left(\mathrm{Vcc} 5=5 \mathrm{~V} \pm 10 \%, \mathrm{Vcc} 3=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V} s \mathrm{~s}=\mathrm{AVss}=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Sym bol	Pin name	Conditions	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\mathbf{H}}$	Input excluding following	-	$\begin{gathered} 0.65 \times \\ V_{c c 3} \end{gathered}$	-	$\begin{gathered} \hline \mathrm{Vcc} 5+ \\ 0.3 \end{gathered}$	V	
	VIHs	Refer to *	-	$\begin{aligned} & 0.8 \times \\ & V_{c c 3} \end{aligned}$	-	$\begin{gathered} \hline \mathrm{V} \operatorname{co5}+ \\ 0.3 \end{gathered}$	V	Hysteresis input
"L" level input voltage	VIL	Input excluding following	-	Vss - 0.3	-	$\begin{gathered} 0.25 \times \\ \operatorname{Vcc} 3 \end{gathered}$	V	
	Vıss	Refer to *	-	Vss - 0.3	-	$\begin{aligned} & 0.2 \times \\ & V_{c c 3} \end{aligned}$	V	Hysteresis input
" H " level output voltage	Vон	-	$\begin{aligned} & \mathrm{V} \mathrm{cc} 5=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline \mathrm{V} c 5- \\ 0.5 \end{gathered}$	-	-	V	
"L" level output voltage	Vol	-	$\begin{aligned} & \mathrm{V} \mathrm{cc} 5=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current (Hi-Z output leak current)	lL	-	$\begin{aligned} & V_{c c 5}=5.5 \mathrm{~V} \\ & 0.45 \mathrm{~V} \\ & <\mathrm{V}_{1}<\mathrm{V}_{c c 5} \end{aligned}$	-5	-	+5	$\mu \mathrm{A}$	
Pull-up resistance value	Rpule	$\overline{\mathrm{RST}}$	$\begin{aligned} & \mathrm{V} c \mathrm{c} 5=5.5 \mathrm{~V} \\ & \mathrm{~V}_{1}=0.45 \mathrm{~V} \end{aligned}$	25	50	200	$\mathrm{k} \Omega$	
Power current	Icc	Vcc5	$\mathrm{fc}_{\mathrm{c}}=12.5 \mathrm{MHz}$	-	50	70	mA	(4 times) in case of 50 MHz operation
		Vcc3	$\begin{aligned} & \mathrm{V} \text { cc5 }=5.5 \mathrm{~V} \\ & \mathrm{~V} \mathrm{c} 3=3.465 \mathrm{~V} \end{aligned}$	-	100	150	mA	
	Icos	Vcc5	$\mathrm{fc}_{\mathrm{c}}=12.5 \mathrm{MHz}$	-	20	30	mA	In case of sleeping
		Vcc3	$\begin{aligned} & \mathrm{V} \text { cc5 }=5.5 \mathrm{~V} \\ & \mathrm{~V} \mathrm{c} 3=3.465 \mathrm{~V} \end{aligned}$	-	50	70	mA	
	Іссн	Vcc5	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V} \operatorname{co5}=5.5 \mathrm{~V} \\ & \mathrm{~V} \operatorname{co3}=3.465 \mathrm{~V} \end{aligned}$	-	10	20	$\mu \mathrm{A}$	In case of stopping
		Vcc3		-	200	900	$\mu \mathrm{A}$	
Input capacity	Cin	Other than Vcc , Avcc, Avss and Vss	-	-	10	-	pF	

* : Hysteresis input pins : $\overline{\mathrm{RST}}, \overline{\mathrm{HST}}, \overline{\mathrm{NMI}}, \mathrm{PE0} / \overline{\mathrm{ATG}}, \mathrm{PE} 1 / T R G 0,3$, PE2/TRG1, 4, PE3/TRG2, 5, PF0/INT0 to PF7/INT7, PG0/DREQ0, PG3/DREQ1, PH0/DREQ2, PH3/SI, PH5/SCK, PH6/TI0, PI0/TI1, $\overline{\text { BGRNT} / P 81, ~ W R 1 / P 85, ~} \overline{\mathrm{CS} 1 / P A 0 ~ t o ~ C L K / P A 6, ~}$ RASO/PB0 to $\overline{\text { DW1/PB7 }}$

MB91110 Series

4. AC Characteristics

Measurement Conditions

The following conditions are applied to items without particular specifications.

- Alternating current standard measurement condition

Vcc5:5.0 $\mathrm{V} \pm 10 \%$

V_{IH}	2.4 V	$\mathrm{~V}_{\text {OH }}$	2.4 V
$\mathrm{~V}_{\mathrm{IL}}$	0.8 V	$\mathrm{~V}_{\mathrm{L}}$	0.8 V

- Load condition

Output pin

MB91110 Series

(1) Clock Timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Clock frequency (1)	fc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		10.0	12.5	MHz	Self oscillation 12.5
Clock cycle time	tc	$\begin{aligned} & \text { X0 } \\ & \text { X1 } \end{aligned}$	-	80	100	ns	MHz Internal 50 MHz peration (via PL
Frequency fluctuation rate* ${ }^{\star_{1}}$ (when locked)	Δf	-		-	5	\%	4 times)
Clock frequency (2)	fc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		10	25	MHz	Self oscillation ($1 / 2$ cycle input)
Clock frequency (3)	$f \mathrm{c}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	10	25	MHz	External clock ($1 / 2$ cycle input)
Clock cycle time	tc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		40	100	ns	
Input clock pulse width	$\begin{aligned} & \hline \text { Pwh } \\ & \text { PwL } \end{aligned}$	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		10	-	ns	Clock is input to X0/X1
	Pwh	X0		25	-	ns	Clock is input to X0 only
Input clock rising/falling time	tcr	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	-	8	ns	(tcr + tcF)
Internal operation clock frequency	fcp		-	0.625*2	50	MHz	CPU system
	f.Pb			0.625*2	$25^{* 3}$		Bus system
	f.pp			0.625*2	25		Peripheral system
Internal operation clock cycle time	tcp			20	1600*2	ns	CPU system
	tcpb			$40^{* 3}$	1600*2		Bus system
	topp			40	1600*2		Peripheral system

*1 : Frequency fluctuation rate indicates the maximum fluctuation ratio from the setting central frequency during locking in case of doubling.

*2 : This is the value when 10 MHz , which is the minimum value of the clock frequency, is input to X 0 and $1 / 2$ cycle of the oscillation circuit and gearing of $1 / 8$ are used.
*3 : This is the value when doubler is used with a 50 MHz CPU.

MB91110 Series

- Clock timing standard measurement conditions

- Guaranteed operating area

MB91110 Series

- External/internal clock settable area

Notes: • 10.0 MHz to 12.5 MHz must be input for external clock input when PLL is used.

- PLL oscillation stabilization time should be larger than $100 \mu \mathrm{~s}$.
- Internal clock gear should be set within the above range.

MB91110 Series

(2) Clock Output Timing
$\left(\mathrm{Vcc} 5=5 \mathrm{~V} \pm 10 \%, \mathrm{Vcc} 3=3.3 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=\mathrm{AVss}=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Cycle time	torc	CLK	-	tcp	-	ns	*1
				$2 \times \mathrm{tcp}$	-		In case of using doubler
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK		1/2xtcyc - 10	$1 / 2 \times$ tcyc +10	ns	*2
CLK $\downarrow \rightarrow$ CLK \uparrow	tclch	CLK		1/2 \times tcyc -10	$1 / 2 \times$ tcyc +10	ns	* 3

*1 : tcrc is frequency of 1 clock cycle including the gear cycle.
*2 : This standard value is in the case where the gear cycle is 1 .
If the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, calculation should be made using the following formula and replacing n with $1 / 2,1 / 4$ or $1 / 8$.

- Minimum : $(1-\mathrm{n} / 2) \times$ tcyc -10
- Maximum : $(1-\mathrm{n} / 2) \times$ tcyc +10

Gear cycle of 1 should be taken when using a doubler.
*3 : This standard value is in the case where the gear cycle is 1 .
If the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, calculation should be made using the following formula and replacing n with $1 / 2,1 / 4$ or $1 / 8$.

- Minimum : $\mathrm{n} / 2 \times \operatorname{tcyc}-10$
- Maximum : $\mathrm{n} / 2 \times$ tcyc +10

Gear cycle of 1 should be taken when using a doubler.

MB91110 Series

The relationship between the CLK pin set using CHC/CCK1/CCK0 bit of the "Gear Control Register" (GCR) and original oscillation input is as follows. However, original oscillation input indicates "X0 input clock" in this figure.
(When using doubler)

- PLL system (CHC bit of GCR : "0"setting)

- $\mathbf{2}$ cycles system (CHC bit of GCR : " 1 "setting)

Original oscillation input
(a) Gear $\times 1$ CLK pin CCK1/0: "00"
(b) Gear $\times 1 / 2$ CLK pins CCK1/0: "01"
(c) Gear $\times 1 / 4$ CLK pins CCK1/0: "10"
(d) Gear $\times 1 / 8$ CLK pins CCK1/0: "11"

MB91110 Series

(3) Reset / Hardware Standby Input

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	RST	-	tcp $\times 5$	-	ns	
Hardware standby input time	thstL	HST	-	top $\times 5$	-	ns	

MB91110 Series

(4) Power On Reset

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Power startup time	t_{R}	Vcc5	V cc5 $=5 \mathrm{~V}$		30		V_{cc} is less than
			$\mathrm{V} c \mathrm{c} 3=3.3 \mathrm{~V}$	-	18	ms	power is turned on.
Power cut time	toff	Vcc3	-	1	-	ms	Repeated operation
Waiting time for oscillation stabilization	tosc	-	-	$\begin{gathered} 2 \times \mathrm{tc} \times 2^{21} \\ +100 \mu \mathrm{~s} \end{gathered}$	-	ns	

Vcc3

- Other Points to Note
(1) Sudden changes in the power supply voltage may cause a power-on reset .To change the power supply voltage while the device is in operation, it is recommended to rise the voltage smoothly to suppress fluctuations as shown below.
Vcc3
 the supply voltage at $50 \mathrm{mV} / \mathrm{ms}$ or slower.

Vss
(2) When power is turned on, it must be started while the $\overline{\text { RST }}$ pin is set to "L" level, after which wait for trstl and change the level to " H " once the Vcc power level is reached.

MB91110 Series

(5) Normal Bus Access Read/Write Operation
$\left(\mathrm{Vcc} 5=5 \mathrm{~V} \pm 10 \%, \mathrm{Vcc} 3=3.3 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=\mathrm{AV}\right.$ ss $=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Pin Name	Conditions	Value		Unit	Remarks	
		Min.			Max.				
CS0 to CS5 delay time			tchcst	$\frac{\text { CLK }}{\text { CS0 to }} \overline{\mathrm{CS5}}$		-	15	ns	
$\overline{\mathrm{CS0}}$ to $\overline{\mathrm{CS5}}$ delay time		tchesh			-	15	ns		
Address delay time		tchav	$\begin{gathered} \text { CLK } \\ \text { A23 to A00 } \end{gathered}$		-	15	ns		
Data delay time (write)		tchov	$\begin{gathered} \text { CLK } \\ \text { D31 to D16 } \end{gathered}$		-	15	ns		
$\overline{\mathrm{RD}}$ delay time		tclrl	CLK		-	10	ns		
$\overline{\mathrm{RD}}$ delay time		tcler	$\overline{\mathrm{RD}}$		-	10	ns		
$\overline{\text { WR0 }}$ to $\overline{\text { WR1 }}$ delay time		tclw	CLK	-	-	10	ns		
$\overline{\mathrm{WRO}}$ to $\overline{\mathrm{WR1} 1}$ delay time		tclwh	WR0 to WR1		-	10	ns		
Valid address \rightarrow Valid data input time	Read	tavov	$\begin{aligned} & \text { A23 to A00 } \\ & \text { D31 to D16 } \end{aligned}$		-	$3 / 2 \times$ tcrc -40	ns	$\begin{aligned} & { }^{*} 1 \\ & { }^{2} 2 \end{aligned}$	
RD $\downarrow \rightarrow$ Valid data input time		trlov			-	tove - 25	ns	*1	
$\frac{D \text { Data setup } \rightarrow}{\mathrm{RD} \uparrow \text { time }}$		toser	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { D31 to D16 } \end{gathered}$		25	-	ns		
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data holding time		trhox			0	-	ns		

*1 : Time (tcyc \times number of cycles extended) needs to be added to this standard if the bus is extended by automatic waiting insertion and RDY input.
*2 : Values of this standard are in case of gear cycle $\times 1$.
If the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, calculations should be made using the following formula and replacing n with $1 / 2,1 / 4$ or $1 / 8$.
-Calculation formula : $(2-\mathrm{n} / 2) \times$ tcyc -40

MB91110 Series

MB91110 Series

(6) Ready Input Timing
$\left(\mathrm{V}_{\mathrm{cc}} 5=5 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{cc} 3=3.3 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=\mathrm{AV}\right.$ ss $=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RDY setup time \rightarrow CLK \downarrow	trdys	$\begin{aligned} & \text { RDY } \\ & \text { CLK } \end{aligned}$	-	20	-	ns	
CLK $\downarrow \rightarrow$ RDY holding time	troym	$\begin{aligned} & \text { RDY } \\ & \text { CLK } \end{aligned}$		0	-	ns	

MB91110 Series

(7) Holding timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
BGRNT delay time	tchbel	$\frac{\text { CLK }}{\text { BGRNT }}$	-	-	10	ns	
$\overline{\text { BGRNT }}$ delay time	tснвGн			-	10	ns	
Pin floating \rightarrow $\overline{\text { BGRNT }} \downarrow$ time	txHAL	$\overline{\text { BGRNT }}$		tcyc - 10	tcyc + 10	ns	
$\overline{\overline{B G R N T}} \uparrow \rightarrow$ Pin valid time	thahv			tcyc - 10	tcrc +10	ns	

Note : It takes at least one cycle from loading the BRQ to when BGRNT is changed.

MB91110 Series

(8) Read/Write Cycle of the Normal DRAM Mode

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tolrah	$\begin{aligned} & \text { CLK } \\ & \text { RAS } \end{aligned}$	-	-	10	ns	
RAS delay time	tchral			-	10	ns	
CAS delay time	tclcast	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	10	ns	
CAS delay time	tcleash			-	10	ns	
ROW address delay time	tchrav	$\begin{gathered} \text { CLK } \\ \text { A23 to A00 } \end{gathered}$		-	15	ns	
COLUMN address delay time	tchcav			-	15	ns	
$\overline{\text { DW }}$ delay time	tchowl	CLK		-	15	ns	
$\overline{\text { DW }}$ delay time	tchown	DW		-	15	ns	
Output data delay time	tchov 1	$\begin{array}{c\|} \hline \text { CLK } \\ \text { D31 to D16 } \end{array}$		-	15	ns	
RAS $\downarrow \rightarrow$ valid data input time	trldv	$\begin{gathered} \text { RAS } \\ \text { D31 to D16 } \end{gathered}$		-	$\begin{gathered} 5 / 2 \times \\ \operatorname{tcvc}-20 \end{gathered}$	ns	$\begin{aligned} & { }^{* 1} \\ & { }^{2} \end{aligned}$
CAS $\downarrow \rightarrow$ valid data input time	tolov	CAS D31 to D16		-	tcyc - 17	ns	*1
CAS $\uparrow \rightarrow$ data holding time	tcadh			0	-	ns	

*1 : If either the Q1 or A4 cycle is extended for one cycle, the torc time needs to be added to this standard.
*2 : Values of this standard are in case of gear cycle $\times 1$.
If the gear cycle is set to $1 / 2,1 / 4$ or $1 / 8$, calculation should be made using the following formula and replacing n with $1 / 2,1 / 4$ or $1 / 8$.

- Calculation formula : $(3-n / 2) \times \operatorname{tcrc}-20$

MB91110 Series

MB91110 Series

(9) High Speed Page Read/Write Cycle of the Normal DRAM Mode

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclrah	CLK, RAS	-	-	10	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	10	ns	
CAS delay time	tclcash			-	10	ns	
COLUMN address delay time	tchcav	$\begin{gathered} \text { CLK } \\ \text { A23 to A00 } \end{gathered}$		-	15	ns	
$\overline{\text { DW }}$ delay time	tсноwн	CLK, DW		-	15	ns	
Output data delay time	tchDV1	CLK D31 to D16		-	15	ns	
CAS $\downarrow \rightarrow$ valid data input time	tclov	CAS D31 to D16		-	tcyc - 17	ns	*
CAS $\uparrow \rightarrow$ data holding time	tcadh			0	-	ns	

* : When Q4 cycle is extended for 1 cycle, add toyc time to this rating.

MB91110 Series

MB91110 Series

(10) Single DRAM Timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclaahz	$\begin{aligned} & \hline \text { CLK } \\ & \text { RAS } \end{aligned}$	-	-	10	ns	
RAS delay time	tchral2			-	10	ns	
CAS delay time	tchCasl2	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	$\begin{gathered} \hline \mathrm{n} / 2 \times \mathrm{tcyc} \\ +8 \end{gathered}$	ns	
CAS delay time	tchCAsh2			-	10	ns	
ROW address delay time	tchrav2	$\begin{gathered} \text { CLK } \\ \text { A23 to A00 } \end{gathered}$		-	15	ns	
COLUMN address delay time	tchcav2			-	15	ns	
$\overline{\text { DW }}$ delay time	tchowl2	$\frac{\mathrm{CLK}}{\mathrm{DW}}$		-	15	ns	
$\overline{\text { DW }}$ delay time	tchowh2			-	15	ns	
Output data delay time	tchovz	CLK D31 to D16		-	15	ns	
CAS $\downarrow \rightarrow$ valid data input time	tclov2	$\begin{gathered} \text { CAS } \\ \text { D31 to D16 } \end{gathered}$		-	$\begin{gathered} (1-\mathrm{n} / 2) \times \\ \mathrm{tcyc}-17 \end{gathered}$	ns	
CAS $\uparrow \rightarrow$ data holding time	tcadh2			0	-	ns	

MB91110 Series

*1 : Q4S cycle indicates the Q4SR (read) or Q4SW (write) cycle of the Single DRAM cycle.
*2 : indicates when a bus cycle is started from the high-speed page mode.

MB91110 Series

(11) Hyper DRAM Timing
$\left(\mathrm{Vcc} 5=5 \mathrm{~V} \pm 10 \%, \mathrm{Vcc} 3=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tcleah3	$\begin{aligned} & \hline \text { CLK } \\ & \text { RAS } \end{aligned}$		-	10	ns	
RAS delay time	tсhralz			-	10	ns	
CAS delay time	tchcasl3	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	$\begin{gathered} \hline \mathrm{n} / 2 \times \mathrm{tcyc} \\ +8 \end{gathered}$	ns	
CAS delay time	tchiash3			-	10	ns	
ROW address delay time	tchrav3	$\begin{gathered} \text { CLK } \\ \text { A23 to A00 } \end{gathered}$		-	15	ns	
COLUMN address delay time	tchcav3			-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tchriz			-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tснвнз			-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclel3			-	15	ns	
$\overline{\text { DW }}$ delay time	tchowl3	$\frac{\mathrm{CLK}}{\mathrm{DW}}$		-	15	ns	
$\overline{\text { DW }}$ delay time	tсношнз			-	15	ns	
Output data delay time	tchov	$\begin{gathered} \hline \text { CLK } \\ \text { D31 to D16 } \end{gathered}$		-	15	ns	
CAS $\downarrow \rightarrow$ valid data input time	tclov3	CAS D31 to D16		-	tcyc - 20	ns	
CAS $\downarrow \rightarrow$ data holding time	tcadh3			0	-	ns	

MB91110 Series

MB91110 Series

(12) CBR Refresh

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tclaah	$\begin{aligned} & \text { CLK } \\ & \text { RAS } \end{aligned}$		-	10	ns	
RAS delay time	tchral			-	10	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	10	ns	
CAS delay time	tclcash			-	10	ns	

MB91110 Series

(13) Self Refresh

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
RAS delay time	tcleah	$\begin{aligned} & \hline \text { CLK } \\ & \text { RAS } \end{aligned}$		-	10	ns	
RAS delay time	tchral			-	10	ns	
CAS delay time	tclcasl	$\begin{aligned} & \text { CLK } \\ & \text { CAS } \end{aligned}$		-	10	ns	
CAS delay time	tclcash			-	10	ns	

MB91110 Series

(14) UART Timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscre	-	Internal shift clock mode	8 tcycp	-	ns	
$\text { SCLK } \downarrow \rightarrow \text { SOUT }$ Delay time	tsov	-		-80	80	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		100	-	ns	
SCLK $\uparrow \rightarrow$ Valid SIN holding lock	tshlx	-		60	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode	4 tcycp	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcycp	-	ns	
SCLK $\downarrow \rightarrow$ SOUT Delay time	tslov	-		-	150	ns	
Valid SIN \rightarrow SCLK \uparrow	tivsh	-		60	-	ns	
SCLK $\uparrow \rightarrow$ Valid SIN holding lock	tshlx	-		60	-	ns	

Notes: • This is the AC standard in the case of CLK synchronous mode.

- tcycp is the cycle time of the peripheral system clock.

MB91110 Series

- Internal shift clock mode

- External shift clock mode

MB91110 Series

(15) Trigger System Input Timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
A/D initiation trigger input time	ttrg	ATG	-	5 tcycp	-	ns	
PPG initiation trigger input time		$\begin{aligned} & \text { TRG0 to } \\ & \text { TRG5 } \end{aligned}$				ns	

Note : tcycp is the cycle time of the peripheral system clock.

MB91110 Series

(16) DMA Controller Timing

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
				Min.	Max.		
DREQ input pulse width	torwh	DREQ0 to DREQ2	-	2 toyc	-	ns	
DACK delay time (Normal bus) (Normal DRAM)	tcld	CLK DACK0 to DACK2		-	6	ns	
	tclor			-	6	ns	
EOP delay time (Normal bus) (Normal DRAM)	tclel	$\begin{array}{\|c\|} \text { CLK } \\ \text { DEOP0 to DEOP2 } \end{array}$		-	6	ns	
	tcLeh			-	6	ns	
DACK delay time (Single DRAM) (Hyper DRAM)	tchoL	CLK DACK0 to DACK2		-	n/2×tcyc	ns	
	tснон			-	6	ns	
EOP delay time (Single DRAM) (Hyper DRAM)	tchel	$\begin{gathered} \text { CLK } \\ \text { DEOP0 to DEOP2 } \end{gathered}$		-	n/2×torc	ns	
	tснен			-	6	ns	

MB91110 Series

5. A/D Converter Electrical Characteristics

$\left(\mathrm{Vcc} 5=5 \mathrm{~V} \pm 10 \%, \mathrm{Vcc} 3=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{Vss}=\mathrm{AVss}=\mathrm{AVRL}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin Name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	BIT
Conversion error	-	-	-	-	± 3.0	LSB
Linearity error	-	-	-	-	± 2.5	LSB
Differential linearity error	-	-	-	-	± 1.9	LSB
Zero transition error	Vot	AN0 to AN7	-1.5	+0.5	+2.5	LSB
Full-scale transition error	$V_{\text {FST }}$	AN0 to AN7	AVRH - 4.5	AVRH - 1.5	AVRH + 0.5	LSB
Conversion time	-	-	5.6*1	-	-	$\mu \mathrm{s}$
Analog port input current	Iain	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVRH	V
Standard voltage	-	AVRH	AVss	-	AV ${ }_{\text {cc }}$	V
Power supply current	IA	AVcc	-	4	-	mA
	IAH		-	-	$5^{* 2}$	$\mu \mathrm{A}$
Standard voltage current supplied	IR	AVRH	-	110	-	$\mu \mathrm{A}$
	IRH		-	-	$5^{* 2}$	$\mu \mathrm{A}$
Tolerance between channels	-	AN0 to AN7	-	-	4	LSB

*1 : In case of $\mathrm{V}_{\mathrm{cc}} 3=\mathrm{AV} \mathrm{Vc}=3.3 \mathrm{~V} \pm 5 \%$, machine clock 25 MHz
*2 : This is the current in the case that the A/D converter is not activated and the CPU is stopped (in case of $\mathrm{V}_{\mathrm{cc}} 3$ $=$ Avcc $=$ AVRH $=3.465 \mathrm{~V}$)

Notes: • As the AVRH becomes smaller, the tolerance becomes relatively larger.

- Output impedance of external circuits other than analog input must be used under the following condition.

Output impedance of external circuits $<7 \mathrm{k} \Omega$
If the output impedance of the external circuits is too high, the sampling time for the analog voltage may be insufficient.

MB91110 Series

Note: Figures described above should be considered as standard.

MB91110 Series

Definition of A/D Converter Terms

- Resolution

Analog changes that can be identified by A / D converter

- Linearity error

Difference between the straight line linking the zero transition point ($0000000000 \longleftrightarrow 000000$ 0001) to the full-scale transition point (11 1111 1110 $\longleftrightarrow 111111$ 1111) and actual conversion characteristics.

- Differential linearity error

Difference compared to the ideal input voltage value required to change the output code 1LSB

MB91110 Series

- Total error

This indicates the difference between the actual and theoretical values and includes zero transition, full-scale transition and linearity error.

Total tolerance of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}}$ [LSB]
Vот (Ideal value) $=\mathrm{AVRL}+0.5 \mathrm{LSB}$ [V]
$\mathrm{V}_{\text {FST }}$ (Ideal value) $=\mathrm{AVRH}-1.5 \mathrm{LSB}$ [V]
V_{Nt} : Voltage with digital output transferred from $(\mathrm{N}-1)$ н to N

MB91110 Series

INSTRUCTIONS (165 INSTRUCTIONS)

1. How to Read Instruction Set Summary

Mnemonic			Type	OP	CYC	NZVC	Operation	Remarks
$\begin{array}{rl} \hline & A D \\ * & A D \end{array}$	Rj,	Ri	A	A6	1	CCCC	$\mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri}$	
	\#s5,	Ri	C	A4	1	CCCC	$\mathrm{Ri}+\mathrm{s} 5 \rightarrow \mathrm{Ri}$	
	,		,	,	,	,		
\downarrow (1)	$\begin{gathered} \downarrow \\ \text { (2) } \end{gathered}$		$\begin{gathered} \downarrow \\ (3) \end{gathered}$	$\begin{gathered} \downarrow \\ (4) \end{gathered}$	$\begin{gathered} \downarrow \\ (5) \end{gathered}$	$\begin{gathered} \downarrow \\ (6) \end{gathered}$	$\begin{gathered} \downarrow \\ (7) \end{gathered}$	

(1) Names of instructions

Instructions marked with * are not included in CPU specifications. These are extended instruction codes added/extended at assembly language levels.
(2) Addressing modes specified as operands are listed in symbols.

Refer to "2. Addressing mode symbols" for further information.
(3) Instruction types
(4) Hexa-decimal expressions of instructions
(5) The number of machine cycles needed for execution
a: Memory access cycle and it has possibility of delay by Ready function.
b: Memory access cycle and it has possibility of delay by Ready function.
If an object register in a LD operation is referenced by an immediately following instruction, the interlock function is activated and number of cycles needed for execution increases.
c: If an immediately following instruction operates to an object of R15, SSP or USP in read/write mode or if the instruction belongs to instruction format A group, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.
d: If an immediately following instruction refers to MDH/MDL, the interlock function is activated and number of cycles needed for execution increases by 1 to make the total number of 2 cycles needed.

For a, b, c and d, minimum execution cycle is 1.
(6) Change in flag sign

- Flag change

C: Change

- : No change

0 : Clear
1 : Set

- Flag meanings

N : Negative flag
Z:Zero flag
V : Over flag
C: Carry flag
(7) Operation carried out by instruction

MB91110 Series

2. Addressing Mode Symbols

Ri	: Register direct (R0 to R15, AC, FP, SP)
Rj	: Register direct (R0 to R15, AC, FP, SP)
R13	: Register direct (R13, AC)
Ps	: Register direct (Program status register)
Rs	: Register direct (TBR, RP, SSP, USP, MDH, MDL)
CRi	: Register direct (CR0 to CR15)
CRj	: Register direct (CR0 to CR15)
\#i8	: Unsigned 8-bit immediate (-128 to 255)
	Note: -128 to -1 are interpreted as 128 to 255
\#i20	: Unsigned 20-bit immediate (-0X80000 to 0XFFFFFF)
	Note: -0X7FFFF to -1 are interpreted as 0X7FFFF to 0XFFFFF
\#i32	: Unsigned 32-bit immediate (-0×80000000 to 0XFFFFFFFFF)
	Note: -0X80000000 to -1 are interpreted as 0X80000000 to 0XFFFFFFFF
\#s5	: Signed 5-bit immediate (-16 to 15)
\#s10	: Signed 10-bit immediate (-512 to 508, multiple of 4 only)
\#u4	: Unsigned 4-bit immediate (0 to 15)
\#u5	: Unsigned 5-bit immediate (0 to 31)
\#u8	: Unsigned 8-bit immediate (0 to 255)
\#u10	: Unsigned 10-bit immediate (0 to 1020, multiple of 4 only)
@dir8	: Unsigned 8-bit direct address (0 to 0XFF)
@dir9	: Unsigned 9-bit direct address (0 to 0X1FE, multiple of 2 only)
@dir10	: Unsigned 10-bit direct address (0 to 0X3FC, multiple of 4 only)
label9	: Signed 9-bit branch address (-0X100 to 0XFC, multiple of 2 only)
label12	: Signed 12-bit branch address (-0X800 to 0X7FC, multiple of 2 only)
label20	: Signed 20-bit branch address (-0X80000 to 0X7FFFF)
label32	: Signed 32-bit branch address (-0X80000000 to 0X7FFFFFFF)
@Ri	: Register indirect (R0 to R15, AC, FP, SP)
@Rj	: Register indirect (R0 to R15, AC, FP, SP)
@(R13, Rj)	: Register relative indirect (Rj: R0 to R15, AC, FP, SP)
@(R14, disp10) :	: Register relative indirect (disp10: -0X200 to 0X1FC, multiple of 4 only)
@(R14, disp9)	: Register relative indirect (disp9: -0X100 to 0XFE, multiple of 2 only)
@(R14, disp8)	: Register relative indirect (disp8: -0X80 to 0X7F)
@(R15, udisp6)	: Register relative (udisp6: 0 to 60, multiple of 4 only)
@Ri+	: Register indirect with post-increment (R0 to R15, AC, FP, SP)
@R13+	: Register indirect with post-increment (R13, AC)
@SP+	: Stack pop
@-SP	: Stack push
(reglist)	: Register list

MB91110 Series

3. Instruction Types

Type A

Type B

Type C

ADD, ADDN, CMP, LSL, LSR and ASR instructions only
Type *C'

Type D

Type F

MB91110 Series

4. Detailed Description of Instructions

- Add/subtract operation instructions (10 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
	Rj, Ri \#s5, Ri \#i4, Ri \#i4, Ri	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	A6 A4 A4 A5	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{llll} \hline \text { C C C C C } \\ \text { C C C C } \\ & & \\ \text { C C C C C } \\ \text { C C C C } \end{array}$	$\begin{aligned} & \mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{s5} \rightarrow \mathrm{Ri} \\ & \\ & \\ & \mathrm{Ri}+\operatorname{extu}(\mathrm{i} 4) \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\text { extu }(\mathrm{i} 4) \rightarrow \mathrm{Ri} \end{aligned}$	MSB is interpreted as a sign in assembly language Zero-extension Sign-extension
ADDC	Rj, Ri	A	A7	1	CCCC	$R i+R j+c \rightarrow R i$	Add operation with sign
$\begin{aligned} & \text { ADDN } \\ & \text { *ADDN } \\ & \\ & \text { ADDN } \\ & \text { ADDN2 } \end{aligned}$	Rj, Ri \#s5, Ri \#i4, Ri \#4, Ri	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C}^{\prime} \\ & \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	A2 A0 A1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \mathrm{Ri}+\mathrm{Rj} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\mathrm{s} 5 \rightarrow \mathrm{Ri} \\ & \\ & \\ & \mathrm{Ri}+\operatorname{extu}(\mathrm{i} 4) \rightarrow \mathrm{Ri} \\ & \mathrm{Ri}+\text { extu }(\mathrm{i} 4) \rightarrow \mathrm{Ri} \end{aligned}$	MSB is interpreted as a sign in assembly language Zero-extension Sign-extension
SUB	Rj, Ri	A	AC	1	C C C C	$\mathrm{Ri}-\mathrm{Rj} \rightarrow \mathrm{Ri}$	
SUBC	Rj, Ri	A	AD	1	CCCC	$\mathrm{Ri}-\mathrm{Rj}-\mathrm{c} \rightarrow \mathrm{Ri}$	Subtract operation with carry
SUBN	Rj, Ri	A	AE	1	- - - -	$R \mathrm{i}-\mathrm{Rj} \rightarrow \mathrm{Ri}$	

- Compare operation instructions (3 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
CMP	Rj, Ri	A	AA	1	CCCC	Ri-Rj	
* CMP	\#s5, Ri	C'	A8	1	CCCC	$\mathrm{Ri}-\mathrm{s} 5$	MSB is interpreted as a sign in assembly
							language
CMP	\#i4, Ri	C	A8	1	CCCC	Ri + extu (i4)	Zero-extension
CMP2	\#i4, Ri	C	A9	1	CCCC	$\mathrm{Ri}+$ extu (i4)	Sign-extension

- Logical operation instructions (12 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
AND	Rj, Ri	A	82	1	C C - -	Ri \& $=\mathrm{Rj}$	Word
AND	Rj, @Ri	A	84	$1+2 \mathrm{a}$	C C - -	(Ri) \& $=\mathrm{Rj}$	Word
ANDH	Rj, @Ri	A	85	$1+2 \mathrm{a}$	C C - -	(Ri) \& $=\mathrm{Rj}$	Half word
ANDB	Rj, @Ri	A	86	$1+2 \mathrm{a}$	C C - -	(Ri) \& $=R \mathrm{j}$	Byte
OR	Rj, Ri	A	92	1	C C - -	$\mathrm{Ri} \quad \mid=\mathrm{Rj}$	Word
OR	Rj , @Ri	A	94	$1+2 \mathrm{a}$	C C--	(Ri) $\mid=R \mathrm{j}$	Word
ORH	Rj, @Ri	A	95	$1+2 \mathrm{a}$	C C - -	(Ri) $\mid=R \mathrm{j}$	Half word
ORB	Rj, @Ri	A	96	$1+2 \mathrm{a}$	C C - -	(Ri) $\mid=R \mathrm{j}$	Byte
EOR	Rj, Ri	A	9A	1	C C - -	$\mathrm{Ri} \wedge=\mathrm{Rj}$	Word
EOR	Rj, @Ri	A	9 C	$1+2 \mathrm{a}$	C C - -	$(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Word
EORH	Rj, @Ri	A	9 D	$1+2 \mathrm{a}$	C C - -	$(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Half word
EORB	Rj, @Ri	A	9E	$1+2 \mathrm{a}$	C C - -	$(\mathrm{Ri})^{\wedge}=\mathrm{Rj}$	Byte

MB91110 Series

- Bit manipulation arithmetic instructions (8 instructions)

	Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks
BANDL BANDH *BAND	$\begin{aligned} & \text { \#u4, @Ri } \\ & \text { (u4: } 0 \text { to } 0 \mathrm{OFH} \text {) } \\ & \text { \#u4, @Ri } \\ & \text { (u4: } 0 \text { to } 0 \mathrm{OH} \text {) } \\ & \text { \#u8, @Ri } \end{aligned}$	*1	\bar{c} C	80 81	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		(Ri) $\&=(F O H+u 4)$ (Ri) $\&=\left((u 4 \ll 4)+0 F_{H}\right)$ (Ri) $\&=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
$\begin{aligned} & \text { BORL } \\ & \text { BORH } \\ & * \text { BOR } \end{aligned}$	\#u4, @Ri (u4: 0 to 0 FH) \#u4, @Ri (u4: 0 to 0 FH) \#u8, @Ri	*2	C C		$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		(Ri) $\mid=u 4$ (Ri) $\mid=(u 4 \ll 4)$ (Ri) $\mid=u 8$	Manipulate lower 4 bits Manipulate upper 4 bits
$\begin{aligned} & \text { BEORL } \\ & \text { BEORH } \\ & \text { * BEOR } \end{aligned}$	\#u4, @Ri (u4: 0 to 0Fн) \#u4, @Ri (u4: 0 to 0Fн) \#u8, @Ri	*3	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	98 99	$\begin{aligned} & 1+2 a \\ & 1+2 a \end{aligned}$		$\begin{aligned} & (\mathrm{Ri})^{\wedge}=\mathrm{u} 4 \\ & (\mathrm{Ri})^{\wedge}=(\mathrm{u} 4 \ll 4) \\ & (\mathrm{Ri})^{\wedge}=\mathrm{u} \end{aligned}$	Manipulate lower 4 bits Manipulate upper 4 bits
$\begin{aligned} & \text { BTSTL } \\ & \text { BTSTH } \end{aligned}$	\#u4, @Ri (u4: 0 to 0 Fh) \#u4, @Ri (u4: 0 to 0Fн)		C C	$\begin{aligned} & 88 \\ & 89 \end{aligned}$	$\begin{aligned} & 2+a \\ & 2+a \end{aligned}$	$\begin{aligned} & \text { OC - - } \\ & \text { C C - - } \end{aligned}$	(Ri) \& $u 4$ (Ri) \& (u4 $\ll 4$)	Test lower 4 bits Test upper 4 bits

*1: Assembler generates BANDL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BANDH if " $48 \& 0 x$ F0" leaves an active bit. Depending on the value in the " 48 " format, both BANDL and BANDH may be generated.
*2: Assembler generates BORL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BORH if "u8\&0xF0" leaves an active bit.
*3: Assembler generates BEORL if result of logical operation "u8\&0x0F" leaves an active (set) bit and generates BEORH if "u8\&0xF0" leaves an active bit.

- Add/subtract operation instructions (10 instructions)

*1: DIVOS, DIV1 $\times 32$, DIV2, DIV3 and DIV4S are generated. A total instruction code length of 72 bytes.
*2: DIVOU and DIV1 $\times 32$ are generated. A total instruction code length of 66 bytes.

MB91110 Series

- Shift arithmetic instructions (9 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LSL	Rj, Ri	A	B6	1	C C-C	$\mathrm{Ri} \ll \mathrm{Rj} \rightarrow \mathrm{Ri}$	Logical shift
* LSL	\#u5, Ri	C'	B4	1	C C-C	$\mathrm{Ri} \ll \mathrm{u} 5 \rightarrow \mathrm{Ri}$	
LSL	\#u4, Ri	C	B4	1	C C-C	$\mathrm{Ri} \ll \mathrm{u} 4 \rightarrow \mathrm{Ri}$	
LSL2	\#u4, Ri	C	B5	1	C C-C	$\mathrm{Ri} \ll(\mathrm{u} 4+16) \rightarrow \mathrm{Ri}$	
LSR	Rj, Ri	A	B2	1	C C-C	$\mathrm{Ri} \gg \mathrm{Rj} \rightarrow \mathrm{Ri}$	Logical shift
* LSR	\#u5, Ri	C'	B0	1	C C-C	Ri>>u5 $\rightarrow \mathrm{Ri}$	
LSR	\#u4, Ri	C	B0	1	C C-C	$\mathrm{Ri} \gg \mathrm{u} 4 \rightarrow \mathrm{Ri}$	
LSR2	\#u4, Ri	C	B1	1	C C-C	$\mathrm{Ri} \gg(\mathrm{u} 4+16) \rightarrow \mathrm{Ri}$	
ASR	Rj, Ri	A	BA	1	C C-C	$\mathrm{Ri} \gg \mathrm{Rj} \rightarrow \mathrm{Ri}$	Logical shift
* ASR	\#u5, Ri	C^{\prime}	B8	1	C C-C	Ri>>u5 $\rightarrow \mathrm{Ri}$	
ASR	\#u4, Ri	C	B8	1	C C-C	Ri>>u4 $\rightarrow \mathrm{Ri}$	
ASR2	\#u4, Ri	C	B9	1	C C-C	$\mathrm{Ri} \gg(\mathrm{u} 4+16) \rightarrow \mathrm{Ri}$	

- Immediate value data transfer instruction (immediate value set/16-bit/32-bit immediate value transfer instruction) (3 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LDI: 32	\#i32, Ri	E	9F-8	3	- - - -	$\mathrm{i} 32 \rightarrow \mathrm{Ri}$	
LDI: 20	\#i20, Ri	C	9B	2	- - - -	$\mathrm{i} 20 \rightarrow \mathrm{Ri}$	Upper 12 bits are zeroextended
$\begin{aligned} & \text { LDI: } 8 \\ & \text { * LDI } \end{aligned}$	$\begin{aligned} & \text { \#i8, Ri } \\ & \# \text { \{i8\| } \mathrm{i} 20 \mid \mathrm{i} 32\}, \mathrm{Ri} \end{aligned}$	B	C0	1	- - - -	$\left\{\begin{array}{l} i 8 \rightarrow \mathrm{Ri} \\ \{i 8\|\mathrm{i} 20\| \mathrm{i} 32\} \rightarrow \mathrm{Ri} \end{array}\right.$	Upper 24 bits are zeroextended

*1: If an immediate value is given in absolute, assembler automatically makes i8, i20 or i32 selection.
If an immediate value contains relative value or external reference, assembler selects i32.

- Memory load instructions (13 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
LD	@Rj, Ri	A	04	b	- - - -	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	
LD	@(R13, Rj), Ri	A	00	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	
LD	@(R14, disp10), Ri	B	20	b	- - - -	$(\mathrm{R14}+$ disp10) $\rightarrow \mathrm{Ri}$	
LD	@(R15, udisp6), Ri	C	03	b	- - - -	$(\mathrm{R} 15+$ udisp6) $\rightarrow \mathrm{Ri}$	
LD	@R15 +, Ri	E	07-0	b		$(\mathrm{R15}) \rightarrow \mathrm{Ri}, \mathrm{R} 15+=4$	
LD	@R15 +, Rs	E	07-8	b	- -	$(\mathrm{R} 15) \rightarrow \mathrm{Rs}, \mathrm{R} 15+=4$	Rs: Special-purpose register
LD	@R15 +, PS	E	07-9	$1+a+b$	CCCC	$(\mathrm{R} 15) \rightarrow \mathrm{PS}, \mathrm{R} 15+=4$	
LDUH		A	05		-		Zero-extension
LDUH	@(R13, Rj), Ri	A	01	b	-	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUH	@(R14, disp9), Ri	B	40	b	- - - -	$(\mathrm{R} 14+\text { disp9 }) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@Rj, Ri	A	06	b	- - - -	$(\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@(R13, Rj), Ri	A	02	b	- - - -	$(\mathrm{R} 13+\mathrm{Rj}) \rightarrow \mathrm{Ri}$	Zero-extension
LDUB	@(R14, disp8), Ri	B	60	b	- - - -	(R14 + disp8) \rightarrow Ri	Zero-extension

Note: The relations between o8 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows:
disp8 $\rightarrow 08=$ disp8:Each disp is a code extension.
disp9 $\rightarrow 08=$ disp9>>1:Each disp is a code extension.
disp10 $\rightarrow 08=$ disp10>>2:Each disp is a code extension.
udisp6 $\rightarrow \mathrm{u} 4=$ udisp6>>2:udisp4 is a 0 extension.

MB91110 Series

- Memory store instructions (13 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
ST	Ri, @Rj	A	14	a	--	$\mathrm{Ri} \rightarrow$ (Rj)	Word
ST	Ri, @(R13, Rj)	A	10	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R} 13+\mathrm{Rj})$	Word
ST	Ri, @(R14, disp10)	B	30	a	- - - -	$\mathrm{Ri} \rightarrow$ (R14 + disp10)	Word
ST	Ri, @(R15, udisp6)	C	13	a	- - - -	$\mathrm{Ri} \rightarrow$ (R15 + usidp6)	
ST	Ri, @-R15	E	17-0	a	- - - -	$\mathrm{R15}-=4, \mathrm{Ri} \rightarrow$ (R15)	
ST	Rs, @-R15	E	17-8	a	- - - -	R15- = 4, Rs \rightarrow (R15)	Rs: Special-purpose register
ST	PS, @-R15	E	17-9	a	-- - -	R15-= 4, PS \rightarrow (R15)	
STH	Ri, @Rj	A	15	a	- -	$\mathrm{Ri} \rightarrow$ (Rj)	Half word
STH	Ri, @(R13, Rj)	A	11	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R13}+\mathrm{Rj})$	Half word
STH	Ri, @(R14, disp9)	B	50	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R14}+\mathrm{disp} 9)$	Half word
STB	Ri, @Rj	A	16	a	- -	$\mathrm{Ri} \rightarrow$ (Rj)	Byte
STB	Ri, @(R13, Rj)	A	12	a	- - - -	$\mathrm{Ri} \rightarrow(\mathrm{R13}+\mathrm{Rj})$	Byte
STB	Ri, @(R14, disp8)	B	70	a	- - - -	$\mathrm{Ri} \rightarrow$ (R14 + disp8)	Byte

Note: The relations between 08 field of TYPE-B and u4 field of TYPE-C in the instruction format and assembler description from disp8 to disp10 are as follows:
disp8 $\rightarrow 08=$ disp8:Each disp is a code extension.
disp9 $\rightarrow 08=$ disp9>>1:Each disp is a code extension.
disp10 $\rightarrow 08=$ disp10>>2:Each disp is a code extension.
udisp6 \rightarrow u4 $=$ udisp6>>2:udisp4 is a 0 extension.

- Transfer instructions between registers/special-purpose registers transfer instructions (5 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
MOV	Rj, Ri	A	8B	1	----	$\mathrm{Rj} \rightarrow \mathrm{Ri}$	Transfer between general-purpose registers
MOV	Rs, Ri	A	B7	1	- - - -	$\mathrm{Rs} \rightarrow \mathrm{Ri}$	Rs: Special-purpose register
MOV	Ri, Rs	A	B3	1	- - -	$\mathrm{Ri} \rightarrow \mathrm{Rs}$	Rs: Special-purpose register
MOV MOV	$\begin{aligned} & \text { PS, Ri } \\ & \text { Ri, PS } \end{aligned}$	$\begin{aligned} & E \\ & E \end{aligned}$	$\left\lvert\, \begin{aligned} & 17-1 \\ & 07-1 \end{aligned}\right.$	$\begin{aligned} & 1 \\ & c \end{aligned}$	$\bar{C} \bar{C} \bar{C} \bar{C}$	$\begin{aligned} & \mathrm{PS} \rightarrow \mathrm{Ri} \\ & \mathrm{Ri} \rightarrow \mathrm{PS} \end{aligned}$	

MB91110 Series

- Non-delay normal branch instructions (23 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
JMP	@Ri	E	97-0	2	----	$\mathrm{Ri} \rightarrow \mathrm{PC}$	
$\begin{aligned} & \mathrm{CALL} \\ & \mathrm{CALL} \end{aligned}$	label12 @Ri	F	$\begin{gathered} \text { D0 } \\ 97-1 \end{gathered}$	2	---- ----	$\begin{aligned} & \mathrm{PC}+2 \rightarrow \mathrm{RP}, \\ & \mathrm{PC}+2+\text { rell1 } \times 2 \rightarrow \mathrm{PC} \\ & \mathrm{PC}+2 \rightarrow \mathrm{RP}, \mathrm{Ri} \rightarrow \mathrm{PC} \end{aligned}$	
RET		E	97-2	2	----	$\mathrm{RP} \rightarrow \mathrm{PC}$	Return
INT	\#u8	D	1F	$3+3 \mathrm{a}$	----	$\begin{aligned} & \text { SSP }-=4, \text { PS } \rightarrow(S S P), \\ & \text { SSP }=4, \\ & \text { PC }+2 \rightarrow(S S P), \\ & 0 \rightarrow \text { I flag, } \\ & 0 \rightarrow \text { S flag, } \\ & (T B R+3 F C-u 8 \times 4) \rightarrow P C \end{aligned}$	
INTE		E	9F-3	$3+3 \mathrm{a}$	- - - -	$\begin{aligned} & \mathrm{SSP}-=4, \mathrm{PS} \rightarrow(\mathrm{SSP}), \\ & \mathrm{SSP}-=4, \\ & \mathrm{PC}+2 \rightarrow(\mathrm{SSP}), \\ & 0 \rightarrow \mathrm{~S} \text { flag, } \\ & (\mathrm{TBR}+3 \mathrm{D} 8-\mathrm{u} 8 \times 4) \rightarrow \mathrm{PC} \end{aligned}$	For emulator
RETI		E	97-3	$2+2 \mathrm{a}$	CCCC	$\begin{aligned} & (\mathrm{R} 15) \rightarrow \mathrm{PC}, \mathrm{R} 15-=4, \\ & (\mathrm{R} 15) \rightarrow \mathrm{PS}, \mathrm{R} 15-=4 \end{aligned}$	
BNO	label9	D	E1	1	- - - -	Non-branch	
BRA	label9	D	E0	2	- - - -	$\mathrm{PC}+2+\mathrm{rel} 8 \times 2 \rightarrow \mathrm{PC}$	
BEQ	label9	D	E2	2/1	- - - -	PCif $Z==1$	
BNE	label9	D	E3	2/1	- - - -	PCif $Z==0$	
BC	label9	D	E4	2/1	- - - -	PCif $\mathrm{C}==1$	
BNC	label9	D	E5	2/1	- - - -	PCif $\mathrm{C}==0$	
BN	label9	D	E6	$2 / 1$	- - - -	PCif $\mathrm{N}==1$	
BP	label9	D	E7	2/1	- - - -	PCif $\mathrm{N}==0$	
BV	label9	D	E8	$2 / 1$	- - - -	PCif $\mathrm{V}==1$	
BNV	label9	D	E9	$2 / 1$	-	PCif $\mathrm{V}==0$	
BLT	label9	D	EA	$2 / 1$	-	PCif V xor $\mathrm{N}==1$	
BGE	label9	D	EB	$2 / 1$	-	PCif V xor $\mathrm{N}==0$	
BLE	label9	D	EC	$2 / 1$	----	PCif (V xor N) or $\mathrm{Z}==1$	
BGT	label9	D	ED	2/1	----	PCif (V xor N) or $\mathrm{Z}==0$	
BLS BHI	label9 label9	D	EE EF	$2 / 1$ $2 / 1$	-----	PCif C or $\mathrm{Z}==1$ PCif C or $\mathrm{Z}==0$	

Notes: • " $2 / 1$ " in cycle sections indicates that 2 cycles are needed for branch and 1 cycle needed for non-branch.

- The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows.
label9 \rightarrow rel8 = (label9 - PC - 2)/2 label12 \rightarrow rel11 $=($ label12 - PC -2$) / 2$
- RETI must be operated while S flag $=0$.

MB91110 Series

- Branch instructions with delays (20 instructions)

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
JMP:D	@Ri	E	9F-0	1	----	$\mathrm{Ri} \rightarrow \mathrm{PC}$	
$\begin{aligned} & \text { CALL:D } \\ & \text { CALL:D } \end{aligned}$	label12 @Ri	F	$\begin{gathered} \text { D8 } \\ 9 \mathrm{~F}-1 \end{gathered}$	1	$- \text { - - - }$	$\begin{aligned} & \mathrm{PC}+4 \rightarrow \mathrm{RP}, \\ & \mathrm{PC}+2+\text { rel1 } 1 \times 2 \rightarrow \mathrm{PC} \\ & \mathrm{PC}+4 \rightarrow \mathrm{RP}, \mathrm{Ri} \rightarrow \mathrm{PC} \end{aligned}$	
RET:D		E	9F-2	1	- - - -	RP \rightarrow PC	Return
BNO:D BRA:D BEQ:D BNE:D $B C: D$ BNC:D BN:D BP:D $B V: D$ BNV:D BLT:D BGE:D BLE:D BGT:D BLS:D BHI:D	label9		F1 F0 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		Non-branch $\mathrm{PC}+2+\mathrm{rel} 8 \times 2 \rightarrow \mathrm{PC}$ PCif $Z==1$ PCif $Z==0$ PCif $\mathrm{C}==1$ PCif $\mathrm{C}==0$ PCif $\mathrm{N}==1$ PCif $\mathrm{N}=0$ PCif $\mathrm{V}==1$ PCif $V==0$ PCif V xor $\mathrm{N}==1$ PCif V xor $\mathrm{N}==0$ PCif (V xor N) or $\mathrm{Z}==1$ PCif (V xor N) or $\mathrm{Z}==0$ PCif C or $Z==1$ PCif C or $\mathrm{Z}==0$	

Notes: - The relations between rel8 field of TYPE-D and rel11 field of TYPE-F in the instruction format and assembler discription label9 and label12 are as follows.
label9 \rightarrow rel8 = (label9 - PC - 2)/2 label12 \rightarrow rel11 $=($ label12 - PC -2$) / 2$

- Delayed branch operation always executes next instruction (delay slot) before making a branch.
- Instructions allowed to be stored in the delay slot must meet one of the following conditions. If the other instruction is stored, this device may operate other operation than defined.

The instruction described " 1 " in the other cycle column than branch instruction.
The instruction described "a", "b", "c" or "d" in the cycle column.

MB91110 Series

- Direct addressing instructions

	Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks
DMOV	@dir10, R13	D	08	b	-	(dir10) \rightarrow R13	Word
DMOV	R13, @dir10	D	18	a	- -	R13 \rightarrow (dir10)	Word
DMOV	@dir10, @R13+	D	OC	2 a	-	$($ dir10 $) \rightarrow(\mathrm{R13}), \mathrm{R} 13+=4$	Word
DMOV	@R13+, @dir10	D	1 C	2a	-	$(\mathrm{R} 13) \rightarrow$ (dir10), R13 + = 4	Word
DMOV	@dir10, @-R15	D	OB	2 a	- - - -	R15-= 4, (dir10) \rightarrow (R15)	Word
DMOV	@R15+, @dir10	D	1B	2a	- - - -	$(\mathrm{R} 15) \rightarrow$ (dir10), R15 + = 4	Word
DMOVH	@dir9, R13	D	09	b	-	$(\mathrm{dir} 9) \rightarrow \mathrm{R} 13$	Half word
DMOVH	R13, @dir9	D	19	a	- - - -	R13 \rightarrow (dir9)	Half word
DMOVH	@dir9, @R13+	D	OD	2a	- - - -	$(\mathrm{dir9}) \rightarrow(\mathrm{R} 13), \mathrm{R} 13+=2$	Half word
DMOVH	@R13+, @dir9	D	1D	2a		$(\mathrm{R} 13) \rightarrow$ (dir9), R13 + = 2	Half word
DMOVB	@dir8, R13	D	OA	b	- -	(dir8) \rightarrow R13	Byte
DMOVB	R13, @dir8	D	1A	a	- - - -	R13 \rightarrow (dir8)	Byte
DMOVB	@dir8, @R13+	D	OE	2 a	-	(dir8) \rightarrow (R13), R13 + +	Byte
DMOVB	@R13+, @dir8	D	1E	2a		$(\mathrm{R13}) \rightarrow$ (dir8), R13 + +	Byte

Note: The relations between the dir field of TYPE-D in the instruction format and the assembler description from disp8 to disp10 are as follows:
disp8 \rightarrow dir + disp8:Each disp is a code extension
disp9 \rightarrow dir $=$ disp9>>1:Each disp is a code extension
disp10 \rightarrow dir $=$ disp10>>2:Each disp is a code extension

- Resource instructions (2 instructions)

Mnemonic		Type	OP	Cycle	N Z V C	Operation	Remarks	
LDRES	@Ri+,	$\# u 4$	C	BC	a	----	$(R i) \rightarrow u 4$ resource $R i+=4$	u4: Channel number
STRES	$\# u 4$,	$@ R i+$	C	$B D$	a	----	$u 4$ resource $\rightarrow(R i)$ $R i+=4$	u4: Channel number

- Co-processor instructions (4 instructions)

Mnemonic	Type	OP	Cycle	N Z V C	Operation	Remarks	
COPOP	\#u4, \#CC, CRj, CRi	E	$9 \mathrm{~F}-\mathrm{C}$	$2+\mathrm{a}$	----	Calculation	
COPLD	\#u4, \#CC, Rj, CRi	E	$9 \mathrm{~F}-\mathrm{D}$	$1+2 \mathrm{ai}$	----	$\mathrm{Rj} \rightarrow \mathrm{CRi}$	
COPST	\#u4, \#CC, CRj, Ri	E	$9 \mathrm{~F}-\mathrm{E}$	$1+2 \mathrm{a}$	----	$\mathrm{CRj} \rightarrow \mathrm{Ri}$	
COPSV	\#u4, \#CC, CRj, Ri	E	$9 \mathrm{~F}-\mathrm{F}$	$1+2 \mathrm{a}$	----	$\mathrm{CRj} \rightarrow \mathrm{Ri}$	No error traps

MB91110 Series

- Other instructions (16 instructions)

*1: In the ADDSP instruction, the reference between u8 of TYPE-D in the instruction format and assembler description s10 is as follows.
$s 10 \rightarrow s 8=s 10 \gg 2$
*2: In the ENTER instruction, the reference between i8 of TYPE-C in the instruction format and assembler description u10 is as follows.
$u 10 \rightarrow u 8=u 10 \gg 2$
*3: If either of R0 to R7 is specified in reglist, assembler generates LDM0. If either of R8 to R15 is specified, assembler generates LDM1. Both LDM0 and LDM1 may be generated.
*4: The number of cycles needed for execution of LDM0 (reglist) and LDM1 (reglist) is given by the following calculation; $a \times(n-1)+b+1$ when " n " is number of registers specified.
*5: If either of R0 to R7 is specified in reglist, assembler generates STM0. If either of R8 to R15 is specified, assembler generates STM1. Both STM0 and STM1 may be generated.
*6: The number of cycles needed for execution of STM0 (reglist) and STM1 (reglist) is given by the following calculation; $a \times n+1$ when " n " is number of registers specified.

MB91110 Series

- 20-bit normal branch macro instructions

Mnemonic		Operation	Remarks	
* CALL20	label20, Ri	Next instruction address \rightarrow RP, label $20 \rightarrow \mathrm{PC}$	Ri: Temporary register	*
* BRA20	label20, Ri	label20 \rightarrow PC	Ri: Temporary register	*2
* BEQ20	label20, Ri	if $(Z==1)$ then label20 \rightarrow PC	Ri: Temporary register	*3
* BNE20	label20, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register	*
* BC20	label20, Ri	ifs $/ \mathrm{C}==1$	Ri: Temporary register	*3
* BNC20	label20, Ri	ifs $/ \mathrm{C}==0$	Ri: Temporary register	*3
* BN20	label20, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register	*3
* BP20	label20, Ri	ifs/N $==0$	Ri: Temporary register	*3
* BV20	label20, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register	*3
* BNV20	label20, Ri	ifs/V $=$ = 0	Ri: Temporary register	*3
* BLT20	label20, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
* BGE20	label20, Ri	ifs/ V xor $N==0$	Ri: Temporary register	* 3
* BLE20	label20, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	* 3
* BGT20	label20, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	* 3
* BLS20	label20, Ri	ifs/C or $Z==1$	Ri: Temporary register	*3
* BHI20	label20, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*3

*1: CALL20
(1) If label20 $-\mathrm{PC}-2$ is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL label12
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 \#label20, Ri
CALL @Ri
*2: BRA20
(1) If label20 - PC - 2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:20 \#label20, Ri JMP @Ri
*3: Bcc20 (BEQ20 to BHI20)
(1) If label20 $-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows;

Bcc label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

```
Bxcc false xcc is a revolt condition of cc
LDI:20 #label20, Ri
JMP @Ri
false:
```


MB91110 Series

- 20-bit delayed branch macro instructions

Mnemonic	Operation	Remarks	
* CALL20:D label20, Ri	Next instruction address + $2 \rightarrow$ RP, label20 \rightarrow PC	Ri: Temporary register	${ }^{1}$
*BRA20:D label20, Ri	label20 \rightarrow PC	Ri: Temporary register	*
*BEQ20:D label20, Ri	if ($Z==1$) then label20 \rightarrow PC	Ri: Temporary register	*3
* BNE20:D label20, Ri	ifs/Z $=$ = 0	Ri: Temporary register	*3
* BC20:D label20, Ri	ifs $/ \mathrm{C}==1$	Ri: Temporary register	*3
*BNC20:D label20, Ri	ifs $/ \mathrm{C}==0$	Ri: Temporary register	*3
* BN20:D label20, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register	*3
* BP20:D label20, Ri	ifs/N $==0$	Ri: Temporary register	*3
* BV20:D label20, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register	*3
*BNV20:D label20, Ri	ifs/V $=$ = 0	Ri: Temporary register	*3
* BLT20:D label20, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
*BGE20:D label20, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register	*3
* BLE20:D label20, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BGT20:D label20, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	*3
* BLS20:D label20, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BHI20:D label20, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*3

*1: CALL20:D
(1) If label20 $-\mathrm{PC}-2$ is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL:D label12
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 \#label20,Ri
CALL:D @Ri
*2: BRA20:D
(1) If label20 - PC - 2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA:D label9
(2) If label20-PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:20 \#label20, Ri JMP:D @Ri
*3: Bcc20:D (BEQ20:D to BHI20:D)
(1) If label20 - PC - 2 is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc:D label9
(2) If label20 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false xcc is a revolt condition of cc
LDI:20 \#label20, Ri
JMP:D @Ri
false:

MB91110 Series

- 32-bit normal macro branch instructions

Mnemonic		Operation	Remarks	
* CALL32	label32, Ri	Next instruction address \rightarrow RP, label32 \rightarrow PC	Ri: Temporary register	*
* BRA32	label32, Ri	label32 \rightarrow PC	Ri: Temporary register	*2
* BEQ32	label32, Ri	if $(Z==1)$ then label32 \rightarrow PC	Ri: Temporary register	*3
* BNE32	label32, Ri	ifs $/ \mathrm{Z}==0$	Ri: Temporary register	*
* BC32	label32, Ri	ifs $/ \mathrm{C}==1$	Ri: Temporary register	*3
* BNC32	label32, Ri	ifs $/ \mathrm{C}==0$	Ri: Temporary register	*3
* BN32	label32, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register	*3
* BP32	label32, Ri	ifs/N $==0$	Ri: Temporary register	*3
* BV32	label32, Ri	ifs $/ \mathrm{V}==1$	Ri: Temporary register	*3
* BNV32	label32, Ri	ifs/V $=$ = 0	Ri: Temporary register	*3
* BLT32	label32, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
* BGE32	label32, Ri	ifs/ V xor $N==0$	Ri: Temporary register	* 3
* BLE32	label32, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	* 3
* BGT32	label32, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	* 3
* BLS32	label32, Ri	ifs/C or $Z==1$	Ri: Temporary register	*3
* BHI32	label32, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*3

*1: CALL32
(1) If label $32-\mathrm{PC}-2$ is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL label12
(2) If label32 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 \#label32, Ri
CALL @Ri
*2: BRA32
(1) If label32 $-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows; BRA label9
(2) If label32 - PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;
LDI:32 \#label32, Ri JMP @Ri
*3: Bcc32 (BEQ32 to BHI32)
(1) If label $32-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows;

Bcc label9
(2) If label32-PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

```
Bxcc false xcc is a revolt condition of cc
LDI:32 #label32, Ri
JMP @Ri
false:
```


MB91110 Series

- 32-bit delayed macro branch instructions

Mnemonic	Operation	Remarks	
* CALL32:D label32, Ri	Next instruction address + $2 \rightarrow$ RP, label32 \rightarrow PC	Ri: Temporary register	
* BRA32:D label32, Ri	label32 \rightarrow PC	Ri: Temporary register	2
* BEQ32:D label32, Ri	if $(Z==1)$ then label32 \rightarrow PC	Ri: Temporary register	*
*BNE32:D label32, Ri	ifs $/ Z==0$	Ri: Temporary register	*3
* BC32:D label32, Ri	ifs/C $=$ = 1	Ri: Temporary register	*3
*BNC32:D label32, Ri	ifs $/ \mathrm{C}==0$	Ri: Temporary register	*3
*BN32:D label32, Ri	ifs/ $\mathrm{N}==1$	Ri: Temporary register	*3
*BP32:D label32, Ri	ifs/ $\mathrm{N}==0$	Ri: Temporary register	*3
* BV32:D label32, Ri	ifs/V $=$ = 1	Ri: Temporary register	*3
*BNV32:D label32, Ri	ifs $/ \mathrm{V}==0$	Ri: Temporary register	*3
* BLT32:D label32, Ri	ifs/V xor $\mathrm{N}==1$	Ri: Temporary register	*3
*BGE32:D label32, Ri	ifs/V xor $\mathrm{N}==0$	Ri: Temporary register	*3
* BLE32:D label32, Ri	ifs/(V xor N) or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BGT32:D label32, Ri	ifs/(V xor N) or $\mathrm{Z}==0$	Ri: Temporary register	*3
* BLS32:D label32, Ri	ifs/C or $\mathrm{Z}==1$	Ri: Temporary register	*3
* BHI32:D label32, Ri	ifs/C or $\mathrm{Z}==0$	Ri: Temporary register	*3

*1: CALL32:D
(1) If label32-PC -2 is between -0×800 and $+0 \times 7 \mathrm{fe}$, instruction is generated as follows;

CALL:D label12
(2) If label32-PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 \#label32, Ri
CALL:D @Ri
*2: BRA32:D
(1) If label32 - PC - 2 is between -0×100 and $+0 x f e$, instruction is generated as follows; BRA:D label9
(2) If label32-PC - 2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

LDI:32 \#label32, Ri JMP:D @Ri
*3: Bcc32:D (BEQ32:D to BHI32:D)
(1) If label $32-\mathrm{PC}-2$ is between -0×100 and $+0 \times f e$, instruction is generated as follows; Bcc:D label9
(2) If label32-PC-2 is outside of the range given in (1) or includes external reference symbol, instruction is generated as follows;

Bxcc false xcc is a revolt condition of cc
LDI:32 \#label32,Ri
JMP:D @Ri
false:

MB91110 Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB911110PMT2	144-pin plastic LQFP (FPT-144P-M08)	
MB911V110CR	PGA-299C-A01	

MB91110 Series

PACKAGE DIMENSION

© 2000 FUUITSU LIMITED F144019S-c-2-4

FUJITSU LIMITED

For further information please contact:

 JapanFUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://edevice.fuitsu.com/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0101

© FUJITSU LIMITED Printed in Japan

[^0]: *1 : AMD (Area MoDe register)
 *2 : DSCR (DRAM Signal Control Register)
 *3: LER (Little Endian Register)
 *4 : MODR (MODe Register)

