4-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD75P0116 replaces the μ PD750108's internal mask ROM with a one-time PROM and features expanded ROM capacity.

Because the μ PD75P0116 supports programming by users, it is suitable for use in prototype testing for system development using the μ PD750104, 750106, or 750108 products, and for use in small-lot production.

Detailed information about product features and specifications can be found in the following document μ PD750108 User's Manual: U11330E

FEATURES

- Compatible with μ PD750108
- Memory capacity:
- PROM : 16384×8 bits
-RAM : 512×4 bits
- Can operate in same power supply voltage as the mask ROM version μ PD750108
- $V_{D D}=1.8$ to 5.5 V

ORDERING INFORMATION

Part number	Package	ROM $(\times 8$ bits $)$
μ PD75P0116CU	42-pin plastic shrink DIP $(600 \mathrm{mil}, 1.778-\mathrm{mm}$ pitch $)$	16384
μ PD75P0116GB-3BS-MTX	44-pin plastic QFP $(10 \times 10 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch $)$	16384

Caution On-chip pull-up resistors by mask option cannot be provided.

FUNCTION LIST

TABLE OF CONTENTS

1. PIN CONFIGURATION (Top View) 4
2. BLOCK DIAGRAM 6
3. PIN FUNCTIONS 7
3.1 Port Pins 7
3.2 Non-port Pins 8
3.3 I/O Circuits for Pins 9
3.4 Handling of Unused Pins 11
4. SWITCHING BETWEEN MK I AND MK II MODES 12
4.1 Differences between Mk I Mode and Mk II Mode 12
4.2 Setting of Stack Bank Selection (SBS) Register 13
5. DIFFERENCES BETWEEN μ PD75P0116 AND μ PD750104, 750106, AND 750108 14
6. MEMORY CONFIGURATION 15
7. INSTRUCTION SET 17
8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY 28
8.1 Operation Modes for Program Memory Write/Verify 28
8.2 Steps in Program Memory Write Operation 29
8.3 Steps in Program Memory Read Operation 30
8.4 One-Time PROM Screening 31
9. ELECTRICAL SPECIFICATIONS 32
10. CHARACTERISTIC CURVES (REFERENCE VALUE) 46
11. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUE) 47
12. PACKAGE DRAWINGS 49
13. RECOMMENDED SOLDERING CONDITIONS 51
APPENDIX A. FUNCTION LIST OF μ PD750008, 750108, AND 75P0116 52
APPENDIX B. DEVELOPMENT TOOLS 54
APPENDIX C. RELATED DOCUMENTS 58

1. PIN CONFIGURATION (Top View)

- 42-pin plastic shrink DIP (600 mil, $1.778-\mathrm{mm}$ pitch)
μ PD75P0116CU
XT1 \sim

Note Directly connect VPP to VDD in the normal operation mode.

- 44-pin plastic QFP ($10 \times 10 \mathrm{~mm}, 0.8$-mm pitch)
μ PD75P0116GB-3BS-MTX

Note Directly connect VPP to VDD in the normal operation mode.

PIN NAMES

BUZ	: Buzzer Clock	P70-P73	: Port7
CL1, CL2	: Main System Clock (RC)	P80, P81	: Port8
D0-D7	: Data Bus 0-7	PCL	: Programmable Clock
INT0, 1, 4	: External Vectored Interrupt 0, 1, 4	PTO0, PTO1	$:$ Programmable Timer Output 0, 1
INT2	: External Test Input 2	$\overline{\text { RESET }}$: Reset
KR0-KR7	: Key Return 0-7	SB0, SB1	: Serial Data Bus 0, 1
MD0-MD3	: Mode Selection 0-3	$\overline{\text { SCK }}$: Serial Clock
NC	: No Connection	SI	: Serial Input
P00-P03	: Port0	SO	: Serial Output
P10-P13	: Port1	TIO	: Timer Input 0
P20-P23	: Port2	VDD	: Positive Power Supply
P30-P33	: Port3	VPP	: Programming Power Supply
P40-P43	: Port4	Vss	: Ground
P50-P53	: Port5	XT1, XT2	: Subsystem Clock (Crystal)
P60-P63	: Port6		

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins

Pin name	I/O	Shared by	Function	$\begin{aligned} & \text { 8-bit } \\ & \text { I/O } \end{aligned}$	When reset	I/O circuit type Note
P00	1	INT4	This is a 4-bit input port (PORTO). For P01 to P03, on-chip pull-up resistor connections are software-specifiable in 3-bit units.	\times	Input	
P01	1/O	$\overline{\text { SCK }}$				$<\mathrm{F}>-\mathrm{A}$
P02	I/O	SO/SB0				<F>-B
P03	I/O	SI/SB1				<M>-C
P10	1	INTO	This is a 4-bit input port (PORT1). On-chip pull-up resistor connections are softwarespecifiable in 4-bit units. P10/INT0 can select noise elimination circuit.	\times	Input	-C
P11		INT1				
P12		INT2				
P13		TIO				
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2). On-chip pull-up resistor connections are softwarespecifiable in 4-bit units.	\times	Input	E-B
P21		PTO1				
P22		PCL				
P23		BUZ				
P30	I/O	MD0	This is a programmable 4-bit I/O port (PORT3). Input and output can be specified in single-bit units. On-chip pull-up resistor connections are software-specifiable in 4-bit units.	\times	Input	E-B
P31		MD1				
P32		MD2				
P33		MD3				
P40 Note 2	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4). In the open-drain mode, withstands up to 13 V .	\bigcirc	Highimpedance	M-E
P41 Note 2		D1				
P42 Note 2		D2				
P43 Note 2		D3				
P50 Note 2	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5). In the open-drain mode, withstands up to 13 V .		Highimpedance	M-E
P51 Note 2		D5				
P52 Note 2		D6				
P53 Note 2		D7				
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6). Input and output can be specified in single-bit units. On-chip pull-up resistor connections are softwarespecifiable in 4-bit units.	\bigcirc	Input	$<\mathrm{F}>-\mathrm{A}$
P61		KR1				
P62		KR2				
P63		KR3				
P70	I/O	KR4	This is a 4-bit I/O port (PORT7). On-chip pull-up resistor connections are softwarespecifiable in 4-bit units.		Input	$<\mathrm{F}>-\mathrm{A}$
P71		KR5				
P72		KR6				
P73		KR7				
P80	I/O	-	This is a 2-bit I/O port (PORT8). On-chip pull-up resistor connections are softwarespecifiable in 2-bit units.	\times	Input	E-B
P81		-				

Notes 1. Circuit types enclosed in brackets indicate Schmitt triggered inputs.
2. Low-level input current leakage increases when input instructions or bit manipulation instructions are executed.

3.2 Non-port Pins

Pin name	I/O	Shared by	Function		When reset	I/O circuit type Note 1
TIO	1	P13	External event pulse input to timer/event counter		Input	-C
PTO0	O	P20	Timer/event counter output		Input	E-B
PTO1		P21	Timer counter output			
PCL		P22	Clock output			
BUZ		P23	Outputs any frequency (for buzzer or system clock trimming)			
$\overline{\text { SCK }}$	I/O	P01	Serial clock I/O		Input	<F>-A
SO/SB0		P02	Serial data output Serial data bus I/O			<F>-B
SI/SB1		P03	Serial data input Serial data bus I/O			<M>-C
INT4	1	P00	Edge-triggered vectored interrupt input (Detects both rising and falling edges).			
INTO	I	P10	Edge-triggered vectored interrupt input (detected edge is selectable). INTO/P10 can select noise elimination circuit.	With noise eliminator /asynch selectable	Input	$<\mathrm{B}>-\mathrm{C}$
INT1		P11		Asynchronous		
INT2		P12	Rising edge-triggered testable input	Asynchronous		
KR0-KR3	1	P60-P63	Falling edge-triggered testable input		Input	<F>-A
KR4-KR7	1	P70-P73	Falling edge-triggered testable input		Input	<F>-A
CL1	-	-	Resistor (R) and capacitor (C) connection for main system clock oscillation. External clock cannot be input.		-	-
CL2	-					
XT1	1	-	Crystal resonator connection for subsystem clock. If using an external clock, input it to XT1 and input the inverted clock to X2. XT1 can be used as a 1 -bit (test) input.		-	-
XT2	-					
$\overline{\text { RESET }}$	1	-	System reset input (low level active)		-	
MDO-MD3	1	P30-P33	Mode selection for program memory (PROM) write/verify.		Input	E-B
D0-D3	I/O	P40-P43	Data bus pin for program memory (PROM) write/verify.		Input	M-E
D4-D7		P50-P53				
$V_{\text {PP }}$ Note 2	-	-	Programmable voltage supply in program memory (PROM) write/verify mode. In normal operation mode, connect directly to VdD. Apply +12.5 V in PROM write/verify mode.		-	-
VDD	-	-	Positive power supply		-	-
Vss	-	-	Ground potential		-	-

Notes 1. Circuit types enclosed in brackets indicate Schmitt triggered inputs.
2. During normal operation, the VPP pin will not operate normally unless connected to Vdd pin.

3.3 I/O Circuits for Pins

The I/O circuits for the μ PD75P0116's pin are shown in schematic diagrams below.
(1/2)
TYPE A

3.4 Handling of Unused Pins

Table 3-1. Handling of Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss or Vdd
P01/SCK	Individually connect to Vss or VdD via resistor
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0-P12/INT2	Connect to Vss or Vdd
P13/TI0	
P20/PTO0	```Input mode : individually connect to VSs or VDD via resistor Output mode : open```
P21/PTO1	
P22/PCL	
P23/BUZ	
P30/MD0-P33/MD3	
P40/D0-P43/D3	Connect to Vss
P50/D4-P53/D7	
P60/KR0-P63/KR3	```Input mode : individually connect to Vss or VdD via resistor Output mode : open```
P70/KR4-P73/KR7	
P80, P81	
XT1 ${ }^{\text {Note }}$	Connect to Vss or Vdd
XT2 ${ }^{\text {Note }}$	Open
VPP	Make sure to connect directly to VDD

Note When the subsystem clock is not used, set SOS. 0 to 1 (not to use the internal feedback resistor).

4. SWITCHING BETWEEN MK I AND MK II MODES

Setting a stack bank selection (SBS) register for the μ PD75P0116 enables the program memory to be switched between the Mk I mode and the Mk II mode. This capability enables the evaluation of the μ PD750104, 750106, or 750108 using the μ PD75P0116.

When the SBS bit 3 is set to 1 : sets Mk I mode (corresponds to Mk I mode of μ PD750104, 750106, and 750108)
When the SBS bit 3 is set to 0 : sets Mk II mode (corresponds to Mk II mode of μ PD750104, 750106, and 750108)

4.1 Differences between Mk I Mode and Mk II Mode

Table 4-1 lists the differences between the Mk I mode and the Mk II mode of the μ PD75P0116.

Table 4-1. Differences between Mk I Mode and Mk II Mode

Item		Mk I mode	Mk II mode
Program counter		PC13-0	
Program memory (bytes)		16384	
Data memory (bits)		512×4	
Stack	Stack bank	Selectable from memory banks 0 and 1	
	Stack bytes	2 bytes	3 bytes
Instruction	BRA !addr1 CALLA !addr1	None	Provided
Instruction execution time	CALL !addr	3 machine cycles	4 machine cycles
	CALLF !faddr	2 machine cycles	3 machine cycles
Supported mask ROM versions and mode		Mk I mode of μ PD750104, 750106, and 750108	Mk II mode of μ PD750104, 750106, and 750108

Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL series. This mode enhances the software compatibility with products which have more than 16K bytes. When the Mk II mode is selected, the number of stack bytes (usable area) used in execution of a subroutine call instruction increases by 1 per stack compared to the MkI mode. Furthermore, when a CALL !addr, or CALLF !faddr instruction is used, each instruction takes another machine cycle. Therefore, when more importance is attached to RAM utilization or throughput than software compatibility, use the Mk I mode.

4.2 Setting of Stack Bank Selection (SBS) Register

Use the stack bank selection register to switch between the Mk I mode and the Mk II mode. Figure 4-1 shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to $100 \times \mathrm{B}^{\text {Note }}$ at the beginning of the program. When using the Mk II mode, be sure to initialize it to $000 \times \mathrm{B}$ Note.

Note Set the desired value for \times.

Figure 4-1. Format of Stack Bank Selection Register

Caution SBS3 is set to "1" after RESET input, and consequently the CPU operates in the Mk I mode. When using instructions for the Mk II mode, set SBS3 to " 0 " to enter the Mk II mode before using the instructions.

5. DIFFERENCES BETWEEN μ PD75P0116 AND μ PD750104, 750106, AND 750108

The μ PD75P0116 replaces the internal mask ROM in the μ PD750104, 750106, and 750108 with a one-time PROM and features expanded ROM capacity. The μ PD75P0116's Mk I mode supports the Mk I mode in the μ PD750104, 750106, and 750108 and the μ PD75P0116's Mk II mode supports the Mk II mode in the μ PD750104, 750106, and 750108.

Table 5-2 lists differences among the μ PD75P0116 and the μ PD750104, 750106, and 750108. Be sure to check the differences between corresponding versions beforehand, especially when a PROM version is used for debugging or prototype testing of application systems and later the corresponding mask ROM version is used for full-scale production.

Please refer to the μ PD750108 User's Manual (U11330E) for details on CPU functions and on-chip hardware.

Table 5-1. Differences between μ PD75P0116 and μ PD750104, 750106, and 750108

Item		μ PD750104	μ PD750106	μ PD750108	μ PD75P0116
Program counter		12-bit	13-bit		14-bit
Program memory (bytes)		$\begin{aligned} & \text { Mask ROM } \\ & 4096 \end{aligned}$	$\begin{aligned} & \text { Mask ROM } \\ & 6144 \end{aligned}$	$\begin{aligned} & \text { Mask ROM } \\ & 8192 \end{aligned}$	One-time PROM 16384
Data memory ($\times 4$ bits)		512			
Mask options	Pull-up resistor for port 4 and port 5	Yes (On-chip/not on-chip can be specified.)			No (On-chip not possible)
	Wait time when releasing STOP mode by interrupt generation	Yes ($2^{9} / \mathrm{fcc}$ or none) ${ }^{\text {Note }}$			No (fixed at $2^{9} / \mathrm{fcc}$) ${ }^{\text {Note }}$
	Feedback resistor for subsystem clock	Yes (can select usable or unusable.)			No (usable)
Pin connection	Pins 6-9 (CU)	P33-P30			P33/MD3-P30/MD0
	Pins 23-26 (GB)				
	Pin 20 (CU)	IC			VPP
	Pin 38 (GB)				
	Pins 34-37 (CU)	P53-P50			P53/D7-P50/D4
	Pins 8-11 (GB)				
	Pins 38-41 (CU)	P43-P40			P43/D3-P40/D0
	Pins 13-16 (GB)				
Other		Noise resistance and noise radiation may differ due to the different circuit complexities and mask layouts.			

Note $2^{9} / \mathrm{fcc}: 256 \mu \mathrm{~s}$ at $2.0 \mathrm{MHz}, 512 \mu \mathrm{~s}$ at 1.0 MHz

Caution Noise resistance and noise radiation are different in PROM version and mask ROM versions. If using a mask ROM version instead of the PROM version for processes between prototype development and full production, be sure to fully evaluate the CS of the mask ROM version (not ES).

6. MEMORY CONFIGURATION

Figure 6-1. Program Memory Map

Note Can be used only at Mk II mode.

Remark For instructions other than those noted above, the "BR PCDE" and "BR PCXA" instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

Figure 6-2. Data Memory Map

Note For the stack area, one memory bank can be selected from memory bank 0 or 1.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, refer to the RA75X Assembler Package User's Manual - Language (EEU-1363)). When there are several codes, select and use just one. Upper-case letters, and + and - symbols are key words that should be entered as they are.
For immediate data, enter an appropriate numerical value or label.
Instead of mem, fmem, pmem, bit, etc, a register flag symbol can be described as a label descriptor. (For further description, refer to the μ PD750108 User's Manual (U11330E)) Labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg reg1	$\begin{aligned} & \mathrm{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}, \mathrm{~L} \\ & \mathrm{X}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}, \mathrm{~L} \end{aligned}$
rp rp1 rp2 rp' rp'1	$\begin{aligned} & \mathrm{XA}, \mathrm{BC}, \mathrm{DE}, \mathrm{HL} \\ & \mathrm{BC}, \mathrm{DE}, \mathrm{HL} \\ & \mathrm{BC}, \mathrm{DE} \\ & \mathrm{XA}, \mathrm{BC}, \mathrm{DE}, \mathrm{HL}, X A^{\prime}, \mathrm{BC}^{\prime}, D E^{\prime}, \mathrm{HL}^{\prime} \\ & \mathrm{BC}, \mathrm{DE}, \mathrm{HL}, X A^{\prime}, \mathrm{BC}^{\prime}, D E^{\prime}, \mathrm{HL}^{\prime} \end{aligned}$
rpa rpa1	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label Note 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1	0000H-3FFFH immediate data or label 0000H-3FFFH immediate data or label (in Mk II mode only)
caddr faddr taddr	12-bit immediate data or label 11-bit immediate data or label $20 \mathrm{H}-7 \mathrm{FH}$ immediate data (however, bit0 $=0$) or label
PORTn IEXXX RBn MBn	PORT0-PORT8 IEBT, IECSI, IET0, IET1, IE0-IE2, IE4, IEW RB0-RB3 MB0, MB1, MB15

Note When processing 8-bit data, only even addresses can be specified.
(2) Operation legend

A : A register; 4-bit accumulator
B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register
XA : Register pair (XA); 8-bit accumulator
BC : Register pair (BC)
DE : Register pair (DE)
HL : Register pair (HL)
XA' : Expansion register pair (XA')
$B C^{\prime} \quad$: Expansion register pair ($B C^{\prime}$)
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')
PC : Program counter
SP : Stack pointer
CY : Carry flag; bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag
PORTn : Port n ($\mathrm{n}=0$ to 8)
IME : Interrupt master enable flag
IPS : Interrupt priority select register
IE $\times \times \times$: Interrupt enable flag
RBS : Register bank select register
MBS : Memory bank select register
PCC : Processor clock control register
. : Delimiter for address and bit
$(x \times) \quad$: Contents of address $x x$
$x \times \mathrm{H} \quad:$ Hexadecimal data
(3) Description of symbols used in addressing area

Remarks 1. MB indicates access-enabled memory banks.
2. In area ${ }^{*} 2, M B=0$ for both MBE and MBS.
3. In areas * 4 and $* 5, M B=15$ for both MBE and MBS.
4. Areas * 6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- No skip .. S = 0
- Skipped instruction is 1-byte or 2-byte instruction......... $S=1$
- Skipped instruction is 3-byte instruction Note S = 2

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle ($=\mathrm{tcy}$) of the CPU clock Φ. Use the PCC setting to select among four cycle times.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, \# 44	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String-effect A
		reg1, \# n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \# n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String-effect A
		HL, \# n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String-effect B
		rp2, \# n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @HL+	1	$2+S$	$A \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+\mathrm{S}$	$A \leftarrow(H L)$, then $L \leftarrow L-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftarrow(\mathrm{rpa} 1)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$\mathrm{A} \leftarrow$ (mem)	*3	
		XA, mem	2	2	$\mathrm{XA} \leftarrow(\mathrm{mem})$	*3	
		mem, A	2	2	$($ mem $) \leftarrow \mathrm{A}$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$\mathrm{A} \leftarrow \mathrm{reg}$		
		XA, rp'	2	2	$\mathrm{XA} \leftarrow \mathrm{rp}{ }^{\prime}$		
		reg1, A	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{~A}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	$\mathrm{A} \leftrightarrow(\mathrm{HL})$	*1	
		A, @HL+	1	$2+S$	$A \leftrightarrow(H L)$, then $L \leftarrow L+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+S$	$A \leftrightarrow(H L)$, then $L \leftarrow L-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow$ (rpa1)	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftrightarrow(\mathrm{HL})$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow$ (mem)	*3	
		XA, mem	2	2	$\mathrm{XA} \leftrightarrow$ (mem)	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftrightarrow r p \prime$		
Table reference	MOVT	XA, @PCDE	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{13-8}+\mathrm{DE}\right) \mathrm{ROM}$		
		XA, @PCXA	1	3	XA $\leftarrow\left(\mathrm{PC}_{13-8}+\mathrm{XA}\right)$ Rом		
		XA, @BCDE	1	3	XA $\leftarrow(\mathrm{BCDE})$ Rom ${ }^{\text {Note }}$	*6	
		XA, @BCXA	1	3	XA $\leftarrow(\mathrm{BCXA})$ Rom ${ }^{\text {Note }}$	*6	

Note As for the B register, only the lower 2 bits are valid.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	CY \leftarrow (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow($ pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	$\mathrm{CY} \leftarrow$ (H+ mem3-0.bit $)$	*1	
		fmem.bit, CY	2	2	(fmem.bit) $\leftarrow C \mathrm{CY}$	*4	
		pmem.@L, CY	2	2	$($ pmem7-2 + L3-2.bit $(\mathrm{L} 1-0)) \leftarrow \mathrm{CY}$	*5	
		@H + mem.bit, CY	2	2	($\mathrm{H}+$ mem3-0.bit) $\leftarrow C Y$	*1	
Operation	ADDS	A, \#n4	1	$1+S$	$A \leftarrow A+n 4$		carry
		XA, \#n8	2	$2+S$	$X A \leftarrow X A+n 8$		carry
		A, @HL	1	$1+\mathrm{S}$	$A \leftarrow A+(H L)$	*1	carry
		XA, rp'	2	$2+S$	$X A \leftarrow X A+r p \prime$		carry
		rp'1, XA	2	$2+S$	rp '1 $\leftarrow \mathrm{rp}$ '1 + XA		carry
	ADDC	A, @HL	1	1	$A, C Y \leftarrow A+(H L)+C Y$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A+r p \prime+C Y$		
		rp'1, XA	2	2	rp'1, CY $\leftarrow r p^{\prime} 1+X A+C Y$		
	SUBS	A, @HL	1	$1+\mathrm{S}$	$A \leftarrow A-(H L)$	*1	borrow
		XA, rp'	2	$2+S$	$X A \leftarrow X A-r p \prime$		borrow
		rp'1, XA	2	$2+\mathrm{S}$	rp '1 $\leftarrow \mathrm{rp}$ '1 - XA		borrow
	SUBC	A, @HL	1	1	$A, C Y \leftarrow A-(H L)-C Y$	*1	
		XA, rp'	2	2	XA, CY $\leftarrow X A-r p \prime-C Y$		
		rp'1, XA	2	2	rp'1, CY $\leftarrow r p^{\prime} 1-X A-C Y$		
	AND	A, \#n4	2	2	$A \leftarrow A \wedge n 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \wedge r p \prime$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 ^ XA		
	OR	A, \#n4	2	2	$A \leftarrow A \vee n 4$		
		A, @HL	1	1	$A \leftarrow A \vee(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A v r p \prime$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 v XA		
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \forall r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\forall \mathrm{XA}$		

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Accumulator manipulate	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A} 0, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{\mathrm{n}-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		
Increment/ decrement	INCS	reg	1	$1+\mathrm{S}$	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		rp1	1	$1+\mathrm{S}$	$\mathrm{rp} 1 \leftarrow \mathrm{rp} 1+1$		$\mathrm{rp1}=00 \mathrm{H}$
		@HL	2	$2+\mathrm{S}$	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	$2+\mathrm{S}$	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	$1+\mathrm{S}$	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	$2+\mathrm{S}$	$r p^{\prime} \leftarrow r \mathrm{p}^{\prime}-1$		rp' $=$ FFH
Compare	SKE	reg, \#n4	2	$2+\mathrm{S}$	Skip if reg $=\mathrm{n} 4$		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	$2+$ S	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	$1+\mathrm{S}$	Skip if $A=(H L)$	*1	A $=(\mathrm{HL})$
		XA, @HL	2	$2+$ S	Skip if $X A=(H L)$	*1	$X A=(H L)$
		A, reg	2	$2+$ S	Skip if $\mathrm{A}=$ reg		$\mathrm{A}=\mathrm{reg}$
		XA, rp'	2	$2+$ S	Skip if $X A=r p$ '		X $A=r{ }^{\prime}$
Carry flag manipulate	SET1	CY	1	1	$C Y \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	$1+\mathrm{S}$	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Memory bit manipulate	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 1$	*4	
		pmem.@L	2	2	$($ pmem7-2 + L3-2.bit $($ L1-0) $) \leftarrow 1$	*5	
		@H + mem.bit	2	2	($\mathrm{H}+$ mem3-0.bit $) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem.bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 0$	*4	
		pmem.@L	2	2	$($ pmem7-2 + L3-2.bit $(\mathrm{L} 1-0)) \leftarrow 0$	*5	
		@ $\mathrm{H}+$ mem.bit	2	2	$(\mathrm{H}+$ mem3-0.bit $) \leftarrow 0$	*1	
	SKT	mem.bit	2	$2+S$	Skip if(mem.bit) $=1$	*3	$($ mem.bit $)=1$
		fmem.bit	2	$2+S$	Skip if(fmem.bit) $=1$	*4	$($ fmem. bit $)=1$
		pmem.@L	2	$2+S$	Skip if(pmem7-2 + L3-2.bit(L1-0)) = 1	*5	(pmem.@L) = 1
		@H + mem.bit	2	$2+S$	Skip if(H + mem3-0.bit $)=1$	*1	$(@ H+$ mem.bit $)=1$
	SKF	mem.bit	2	$2+S$	Skip if(mem.bit) $=0$	*3	(mem.bit) $=0$
		fmem.bit	2	$2+S$	Skip if(fmem.bit) $=0$	*4	$($ fmem. bit $)=0$
		pmem.@L	2	$2+S$	Skip if(pmem7-2 + L3-2.bit(L1-0)) = 0	*5	(pmem.@L) = 0
		@H + mem.bit	2	$2+S$	Skip if(H + mem3-0.bit) $=0$	*1	$(@ H+$ mem.bit $)=0$
	SKTCLR	fmem.bit	2	$2+S$	Skip if(fmem.bit) $=1$ and clear	*4	$($ fmem. bit $)=1$
		pmem.@L	2	$2+S$	Skip if(pmem7-2 + L3-2.bit (L1-0)) = 1 and clear	*5	$($ pmem.@L) = 1
		@H + mem.bit	2	$2+S$	Skip if(H + mem3-0.bit) = 1 and clear	*1	$(@ H+$ mem.bit $)=1$
	AND1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY $\leftarrow C Y \wedge($ pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge(\mathrm{H}+$ mem3-0.bit)	*1	
	OR1	CY, fmem.bit	2	2	CY $\leftarrow C Y v$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY $\leftarrow C Y \vee(p m e m 7-2+$ L3-2.bit(L1-0) $)$	*5	
		CY, @H + mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} v$ (H + mem3-0.bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY $\leftarrow C Y \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY $\leftarrow C Y \forall($ pmem7-2 + L3-2.bit(L1-0))	*5	
		CY, @H + mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (H + mem3-0.bit)	*1	

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch	BR Note 1	addr	-	-	$\mathrm{PC}_{13-0} \leftarrow$ addr Assembler selects the most appropriate instruction among the following: - BR !addr - BRCB !caddr - BR \$addr	*6	
		addr1	-	-	$\mathrm{PC}_{13-0} \leftarrow$ addr 1 Assembler selects the most appropriate instruction among the following: - BRA !addr1 - BR !addr - BRCB !caddr - BR \$addr1	*11	
		!addr	3	3	$\mathrm{PC}_{13-0} \leftarrow$ addr	*6	
		\$addr	1	2	$\mathrm{PC}_{13-0} \leftarrow$ addr	*7	
		\$addr1	1	2	$\mathrm{PC}_{13-0} \leftarrow$ addr1		
		PCDE	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13-8}+\mathrm{DE}$		
		PCXA	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13-8}+\mathrm{XA}$		
		BCDE	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{BCDE}$ Note 2	*6	
		BCXA	2	3	$\mathrm{PC}_{13-0} \leftarrow \mathrm{BCXA}{ }^{\text {Note } 2}$	* 6	
	BRA Note 1	!addr1	3	3	$\mathrm{PC}_{13-0} \leftarrow$ addr1	*11	
	BRCB	!caddr	2	2	$\mathrm{PC}_{13-0} \leftarrow \mathrm{PC}_{13}$, $12+$ caddr $11-0$	*8	

Notes 1. Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.
2. As for the B register, only the lower 2 bits are valid.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine stack control	CALLA Note	laddr1	3	3	$\begin{aligned} & (\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0} \leftarrow \text { addr1 }, \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$	*11	
	CALL Note	!addr	3	3 4	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow\left(\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13,12}\right) \\ & \mathrm{PC}_{13-0} \leftarrow \mathrm{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & (\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0} \leftarrow \operatorname{addr}, \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$	*6	
	CALLF Note	!faddr	2	2 3	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow\left(\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13,12}\right) \\ & \mathrm{PC}_{13-0} \leftarrow 000+\text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & (\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0} \leftarrow 000+\text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$	*9	
	RET Note		1	3	$\begin{aligned} & \left(\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13,12}\right) \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \rightarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP}_{4} \leftarrow \mathrm{SP}+4 \\ & \hline \times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4) \\ & 0,0, \mathrm{PC}_{13-12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$		
	RETS Note		1	$3+S$	$\begin{aligned} & \left(\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13,12}\right) \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$ then skip unconditionally $\begin{aligned} & x, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4) \\ & 0,0, \mathrm{PC}_{13-12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$ then skip unconditionally		Unconditional
	RETI Note		1	3	$\begin{aligned} & \mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13,12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \\ & \hline 0,0, \mathrm{PC}_{13,12} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$		

Note Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

Group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine stack control	PUSH	rp	1	1	$(S P-1)(S P-2) \leftarrow r p, S P \leftarrow S P-2$		
		BS	2	2	$(S P-1) \leftarrow \mathrm{MBS},(\mathrm{SP}-2) \leftarrow \mathrm{RBS}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
	POP	rp	1	1	$r p \leftarrow(S P+1)(S P), S P \leftarrow S P+2$		
		BS	2	2	$\mathrm{MBS} \leftarrow(\mathrm{SP}+1), \mathrm{RBS} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
Interrupt control	El		2	2	$\operatorname{IME}(\operatorname{IPS} .3) \leftarrow 1$		
		IExxx	2	2	IExxx $\leftarrow 1$		
	DI		2	2	IME (IPS.3) $\leftarrow 0$		
		IEXXX	2	2	$\operatorname{IExxx} \leftarrow 0$		
I/O	IN Note 1	A, PORTn	2	2	$\mathrm{A} \leftarrow \mathrm{PORTn} \quad(\mathrm{n}=0-8)$		
		XA, PORTn	2	2	XA \leftarrow PORTn ${ }_{+1}$, PORTn $\quad(\mathrm{n}=4,6)$		
	OUT Note 1	PORTn, A	2	2	PORTn $\leftarrow \mathrm{A} \quad(\mathrm{n}=2-8)$		
		PORTn, XA	2	2	PORT ${ }_{+1}$, PORTn \leftarrow XA $\quad(\mathrm{n}=4,6)$		
CPU control	HALT		2	2	Set HALT Mode (PCC. $2 \leftarrow 1$)		
	STOP		2	2	Set STOP Mode(PCC. $3 \leftarrow 1$)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS $\leftarrow \mathrm{n} \quad(\mathrm{n}=0-3)$		
		MBn	2	2	$\mathrm{MBS} \leftarrow \mathrm{n} \quad(\mathrm{n}=0,1,15)$		
	GETINote 2, 3	taddr	1	3	- When using TBR instruction $\mathrm{PC}_{13-0} \leftarrow(\mathrm{taddr}) 5-0+(\mathrm{taddr}+1)$ - When using TCALL instruction $\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13,12} \\ & \mathrm{PC}_{13-0} \leftarrow(\mathrm{taddr}) 5-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$ - When using instruction other than TBR or TCALL Execute (taddr)(taddr + 1) instructions	*10	Determined by referenced instruction
			1	3 4 3	- When using TBR instruction $\mathrm{PC}_{13-0} \leftarrow(\text { taddr }) 5-0+(\text { taddr }+1)$ - When using TCALL instruction $\begin{aligned} & (\mathrm{SP}-5) \leftarrow 0,0, \mathrm{PC}_{13,12} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0} \leftarrow(\mathrm{taddr}) 5-0+(\mathrm{taddr}+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$ - When using instruction other than TBR or TCALL Execute (taddr)(taddr +1) instructions	*10	Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.
2. TBR and TCALL are assembler directives for the GETI instruction's table definitions.
3. Shaded areas indicate support for the Mk II mode only. Other areas indicate support for the Mk I mode only.

8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory in the μ PD75P0116 is a 16384×8-bit electronic write-enabled one-time PROM. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the CL1 pins is used instead of address input as a method for updating addresses.

Pin name	Function
VPP	Pin (usually VDD) where programming voltage is applied during program memory write/verify
CL1, CL2	Clock input to the CL1 pin for address updating during program memory write/verify. Leave the CL2 pin open.
MD0/P30-MD3/P33	Operation mode selection pin for program memory write/verify
D0/P40-D3/P43 (lower 4) D4/P50-D7/P53 (higher 4)	8-bit data I/O pin for program memory write/verify
VDD	Pin where power supply voltage is applied. Power voltage range for normal operation is 1.8 to 5.5 V. Apply 6.0 V for program memory write/verify.

Caution Pins not used for program memory write/verify should be processed as follows.

- All unused pins except XT2 Connect to Vss via a pull-down resistor
- XT2 pin
. Leave open

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the μ PD75P0116's VDD pin and +12.5 V is applied to its VPP pin, program write/verify modes are in effect. Furthermore, the following detailed operation modes can be specified by setting pins MD0 to MD3 as shown below.

Operation mode specification					Operation mode	
VPP	VDD	MD0	MD1	MD2	MD3	
$+12.5 \mathrm{~V}$	$+6 \mathrm{~V}$	H	L	H	L	Zero-clear program memory address
		L	H	H	H	Write mode
	L	L	H	H	Verify mode	
		H	\times	H	H	Program inhibit mode

Remark \times : Lor H

8.2 Steps in Program Memory Write Operation

High-speed program memory write can be executed via the following steps.
(1) Pull down unused pins to Vss via resistors. Set the CL1 pin to low.
(2) Apply +5 V to the Vdd and VPp pins.
(3) Wait $10 \mu \mathrm{~s}$.
(4) Zero-clear mode for program memory addresses.
(5) Apply +6 V to V dD and +12.5 V power to VPP.
(6) Write data using 1 -ms write mode.
(7) Verify mode. If write is verified, go to step (8) and if write is not verified, go back to steps (6) and (7).
(8) $\mathrm{X}[=$ number of write operations from steps (6) and (7)] $\times 1 \mathrm{~ms}$ additional write
(9) 4 pulse inputs to the CL1 pin updates (increments +1) the program memory address.
(10) Repeat steps (6) to (9) until the last address is completed.
(11) Zero-clear mode for program memory addresses.
(12) Apply +5 V to the Vdd and VPP pins.
(13) Power supply OFF

The following diagram illustrates steps (2) to (9).

8.3 Steps in Program Memory Read Operation

The μ PD75P0116 can read out the program memory contents via the following steps.
(1) Pull down unused pins to Vss via resistors. Set the CL1 pin to low.
(2) Apply +5 V to the Vdd and Vpp pins.
(3) Wait $10 \mu \mathrm{~s}$.
(4) Zero-clear mode for program memory addresses.
(5) Apply +6 V power to VDD and +12.5 V to VPP.
(6) Verify mode. When a clock pulse is input to the CL1 pin, data is output sequentially to one address at a time based on a cycle of four pulse inputs.
(7) Zero-clear mode for program memory addresses.
(8) Apply +5 V power to the VdD and VPP pins.
(9) Power supply OFF

The following diagram illustrates steps (2) to (7).

CL1

MD1/P31

MD2/P32

MD3/P33

8.4 One-Time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC. Therefore, NEC recommends the screening process, that is, after the required data is written to the PROM and the PROM is stored under the hightemperature conditions shown below, the PROM should be verified.

Storage temperature	Storage time
$125^{\circ} \mathrm{C}$	24 hours

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V ${ }_{\text {dD }}$		-0.3 to +7.0	V
PROM supply voltage	VPP		-0.3 to +13.5	V
Input voltage	V_{11}	Other than ports 4, 5	-0.3 to $V_{\text {dd }}+0.3$	V
	V_{12}	Ports 4, 5 (N -ch open drain)	-0.3 to +14	V
Output voltage	Vo		-0.3 to $V_{\text {dD }}+0.3$	V
High-level output current	IOH	Per pin	-10	mA
		Total of all pins	-30	mA
Low-level output current	IoL	Per pin	30	mA
		Total of all pins	220	mA
Operating ambient temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$

Caution If the absolute maximum rating of even one of the parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are therefore values which, when exceeded, can cause the product to be damaged. Be sure that these values are never exceeded when using the product.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$ Pins other than tested pins: 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

Main System Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, VDD $=1.8$ to 5.5 V)

Note The oscillation frequency shown above indicates characteristics of the oscillation circuit only. For the instruction execution time and oscillation frequency characteristics, refer to AC Characteristics.

Caution When using the main system clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influences due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vdo.
Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation stabilization time Note 2	$V_{D D}=4.5$ to 5.5 V		1.0	2	S
						10	s
External clock	XT1 XT2	XT1 input frequency (fxt) Note 1		32		100	kHz
		XT1 input high-, low-level widths (tхтн, tхтL)		5		15	$\mu \mathrm{s}$

Notes 1. The oscillation frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
2. The oscillation stabilization time is the time required for oscillation to be stabilized after Vod has been applied.

Caution When using the subsystem clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influences due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vdo.
Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The subsystem clock oscillation circuit has a low amplification factor to reduce current dissipation and is more susceptible to noise than the main system clock oscillation circuit. Therefore, exercise utmost care in wiring the subsystem clock oscillation circuit.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Low-level output current	IoL	Per pin					15	mA
		Total of all pins					150	mA
High-level input voltage	$\mathrm{V}_{\text {H }}$	Ports 2, 3, 8		$2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		VDD	V
				$1.8 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	V_{1+2}	Ports 0, 1, 6, 7, $\overline{\text { RESET }}$		$2.7 \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.8 VDD		VDD	V
				$1.8 \leq \mathrm{VDD}^{5} 2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	Vінз	Ports 4, 5 (N -ch open drain)		$2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		13	V
				$1.8 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	0.9 VDD		13	V
	$\mathrm{V}_{1 \mathrm{H} 4}$	XT1			VDD-0.1		VDD	V
Low-level input voltage	VIL1	Ports 2-5, 8		$2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3 VDD	V
				$1.8 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL2	Ports 0, 1, 6, 7, $\overline{\text { RESET }}$		$2.7 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2 VDD	V
				$1.8 \leq \mathrm{V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL3	XT1			0		0.1	V
High-level output voltage	Vor	$\begin{aligned} & \overline{\mathrm{SCK}}, \mathrm{SO}, \text { ports } 2,3,6-8 \\ & \mathrm{IOH}=-1.0 \mathrm{~mA} \end{aligned}$			VDD-0.5			V
Low-level output voltage	Vol1	$\overline{\mathrm{SCK}}, \mathrm{SO}$, ports 2-8	$\mathrm{loL}=15 \mathrm{~mA}, \mathrm{~V} \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$			0.2	2.0	V
			$\mathrm{loL}=1.6 \mathrm{~mA}$				0.4	V
	VoL2	SB0, SB1	N -ch open drain Pull-up resistor $\geq 1 \mathrm{k} \Omega$				0.2 VDD	V
High-level input leakage current	ІІнн	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}$	Pins other than XT 1				3	$\mu \mathrm{A}$
	ІІاH2		XT1				20	$\mu \mathrm{A}$
	ІІнз	V IN $=13 \mathrm{~V}$	Ports 4, 5 (N -ch open drain)				20	$\mu \mathrm{A}$
Low-level input leakage current	ILLL1	$\mathrm{VIN}=0 \mathrm{~V}$	Pins other than ports 4, 5, XT1				-3	$\mu \mathrm{A}$
	ILLL2		XT1				-20	$\mu \mathrm{A}$
	İı3		Ports 4, 5 (N-ch open drain) When input instruction is not executed				-3	$\mu \mathrm{A}$
			Ports 4, 5 (N -ch open drain) When input instruction is executed				-30	$\mu \mathrm{A}$
				$V_{D D}=5.0 \mathrm{~V}$		-10	-27	$\mu \mathrm{A}$
				$V_{D D}=3.0 \mathrm{~V}$		-3	-8	$\mu \mathrm{A}$
High-level output leakage current	ІІон1	Vout $=\mathrm{V}_{\text {DD }}$	$\overline{\text { SCK, SO/SB0, SB1, Ports 2, 3, 6-8 }}$				3	$\mu \mathrm{A}$
	ILoh2	Vout $=13 \mathrm{~V}$	Ports 4, 5 (N -ch open drain)				20	$\mu \mathrm{A}$
Low-level output leakage current	ILoL	Vout $=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
Internal pull-up resistor	RL	V IN $=0 \mathrm{~V}$	Ports 0-3, 6-8 (except P00 pin)		50	100	200	$\mathrm{k} \Omega$

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	1.0 MHz Note 2 RC oscillation $\mathrm{R}=22 \mathrm{k} \Omega$, $\mathrm{C}=22 \mathrm{pF}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$ Note 3				0.9	1.8	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10$ \% Note 4				250	500	$\mu \mathrm{A}$
	IdD2		HALT mode	$V_{D D}=5.0$	$V \pm 10 \%$		370	920	$\mu \mathrm{A}$
				$V_{D D}=3.0$	$V \pm 10$ \%		170	340	$\mu \mathrm{A}$
	IdD3	32.768 kHz Note 5 crystal oscillation	Lowvoltage mode Note 6	$V_{D D}=3.0$	$V \pm 10$ \%		55.0	200	$\mu \mathrm{A}$
				$V_{D D}=2.0$	$V \pm 10$ \%		22.0	70.0	$\mu \mathrm{A}$
				$V_{D D}=3.0$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		55.0	90.0	$\mu \mathrm{A}$
			Low current dissipation mode Note 7	$V_{D D}=3.0$	$V \pm 10 \%$		50.0	150	$\mu \mathrm{A}$
				$V_{D D}=3.0$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		50.0	85.0	$\mu \mathrm{A}$
	IDD4		HALT mode	Lowvoltage mode Note 6	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		5.0	30.0	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 10 \%$		2.5	10.0	$\mu \mathrm{A}$
					$V_{D D}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0	10.0	$\mu \mathrm{A}$
				Low current consumption mode Note 7	$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		4.0	15.0	$\mu \mathrm{A}$
					$V_{\text {DD }}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	7.0	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=0 \mathrm{~V}$ Note 8 STOP mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$				0.05	5.0	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$				0.02	2.5	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	0.2	$\mu \mathrm{A}$

Notes 1. The current flowing through the internal pull-up resistor is not included.
2. Including the case when the subsystem clock oscillates.
3. When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
4. When the device operates in low-speed mode with PCC set to 0000.
5. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
6. When the suboscillation circuit control register (SOS) is set to 0000.
7. When SOS is set to 0010 .
8. When SOS is set to 00×1, and the suboscillation circuit feedback resistor is not used (\times : don't care).

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Notes 1. The cycle time of the CPU clock (ϕ) (minimum instruction execution time) when the device operates with the main system clock is determined by the time constant of the connected resistor (R) and capacitor (C), and the value of the processor clock control register (PCC). When the device operates with the subsystem clock, the cycle time of the CPU clock (ϕ) is determined by the oscillation frequency of the connected oscillator (and external clock), and the values of the system clock control register (SCC) and processor clock control register (PCC).
The figure on the below shows the supply voltage VDD vs. cycle time tcy characteristics when the device operates with the main system clock.
2. 2 tcy or $128 / \mathrm{fcc}$ depending on the setting of the interrupt mode register (IMO).

Serial Transfer Operation

2-wire and 3-wire serial I/O modes ($\overline{S C K} \cdots$ internal clock output): ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy1	$V_{\text {DD }}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high-, low-level widths	$\begin{aligned} & \text { tкL1, } \\ & \text { tкн1 } \end{aligned}$	$V_{D D}=2.7$ to 5.5 V		tкč1/2-50			ns
				tıcry/2-150			ns
SINote 1 setup time (vs. SCK \uparrow)	tsik1	$V_{\text {DD }}=2.7$ to 5.5 V		150			ns
				500			ns
SINote 1 hold time (vs. $\overline{\text { SCK }} \uparrow$)	tksI1	VDD $=2.7$ to 5.5 V		400			ns
				600			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SONote 1 output delay time	tkso1	$\mathrm{RL}=1 \mathrm{k} \Omega^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		250	ns
		$\mathrm{CL}=100 \mathrm{pF}$		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

2-wire and 3-wire serial I/O modes ($\overline{\mathrm{SCK}} \cdots$ external clock input): ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK cycle time }}$	tkcy2	$V_{\text {DD }}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high-, low-level widths	tкцг,tkHz	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				1600			ns
SINote 1 setup time (vs. $\overline{\mathrm{SCK}} \uparrow$)	tsik2	$V_{D D}=2.7$ to 5.5 V		100			ns
				150			ns
SINote 1 hold time (vs. $\overline{\text { SCK }} \uparrow$)	tksı2	$V_{\text {DD }}=2.7$ to 5.5 V		400			ns
				600			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SONote 1 output delay time	tksoz	$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega \text { Note } 2 \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		300	ns
				0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. $R\left\llcorner\right.$ and C_{L} respectively indicate the load resistance and load capacitance of the SO output line.

SBI mode ($\overline{\mathrm{SCK}} \cdots$ internal clock output (master)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү3	$V_{D D}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high-, low-level widths	tкı3tкнз	$V_{D D}=2.7 \text { to } 5.5 \mathrm{~V}$		tксуз/2-50			ns
				tıcry/2-150			ns
SB0, 1 setup time (vs. $\overline{\text { SCK }} \uparrow$)	tsıкз	$V_{D D}=2.7$ to 5.5 V		150			ns
				500			ns
SB0, 1 hold time (vs. $\overline{\text { SCK } \uparrow \text {) }}$	tks ${ }^{\text {a }}$			tксүз/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SBO, 1 output delay time	tkso3	$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega \text { Note } \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$V_{D D}=2.7$ to 5.5 V	0		250	ns
				0		1000	ns
$\overline{\mathrm{SCK}} \uparrow \rightarrow \mathrm{SB} 0,1 \downarrow$	tksB			tксуз			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tксуз			ns
SB0, 1 low-level width	tsbl			tксуз			ns
SB0, 1 high-level width	tssh			tксуз			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.

SBI mode ($\overline{\mathrm{SCK}} \ldots$ external clock input (slave)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V$)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy4	$V_{D D}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high-, low-level widths	tKL4 tкH4	$V_{D D}=2.7$ to 5.5 V		400			ns
				1600			ns
SBO, 1 setup time (vs. $\overline{\mathrm{SCK}} \uparrow$)	tsik4	$V_{D D}=2.7$ to 5.5 V		100			ns
				150			ns
SB0, 1 hold time (vs. $\overline{\text { SCK }} \uparrow$)	tksis			tkcy4/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SBO, 1 output delay time	tkso4	$\begin{aligned} & \mathrm{RL}=1 \mathrm{k} \Omega \text { Note } \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		300	ns
				0		1000	ns
$\overline{\mathrm{SCK}} \uparrow \rightarrow \mathrm{SB0,1} \downarrow$	tksb			tксү4			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tксу4			ns
SB0, 1 low-level width	tsbl			tксу4			ns
SB0, 1 high-level width	tsb			tксү4			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0 and 1 output lines.

AC Timing Test Points (except XT1 input)

Clock timing

TIO timing

Serial Transfer Timing

3-wire serial I/O mode

2-wire serial I/O mode

Serial Transfer Timing

Bus release signal transfer

Command signal transfer

Interrupt input timing

$\overline{\text { RESET }}$ input timing

Data Retention Characteristics of Data Memory in STOP Mode and at Low Supply Voltage ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Release signal setup time	tsREL		0			$\mu \mathrm{~s}$
Oscillation stabilization wait time Note $\mathbf{1}$	twait	Released by $\overline{\text { RESET }}$			$56 / \mathrm{fcc}$	
		Released by interrupt request		$\mu \mathrm{s}$		

Note The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.

Data retention timing (when STOP mode released by RESET)

Data retention timing (standby release signal: when STOP mode released by interrupt signal)

DC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{VDD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V_{1+1}	Other than CL1 pin	0.7 VDD		VDD	V
	$\mathrm{V}_{\mathrm{IH} 2}$	CL1	VDD - 0.5		VDD	V
Input voltage, low	VIL1	Other than CL1 pin	0		0.3 VDD	V
	VIL2	CL1	0		0.4	V
Input leakage current	lL	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
Output voltage, high	Voн	$\mathrm{IOH}=-1 \mathrm{~mA}$	VDD - 1.0			V
Output voltage, low	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
VDD supply current	IdD				30	mA
VPP supply current	Ipp	$\mathrm{MD0}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD1}=\mathrm{V}_{\mathrm{IH}}$			30	mA

Cautions 1. Keep Vpp to within +13.5 V, including overshoot.

2. Apply Vdd before Vpp and turn it off after Vpp.

AC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{VdD}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.3 \mathrm{~V}, \mathrm{~V} s \mathrm{I}=0 \mathrm{~V}$)

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (vs. MDO \downarrow)	tas	tAs		2			$\mu \mathrm{s}$
MD1 setup time (vs. MD0 \downarrow)	tm1s	toes		2			$\mu \mathrm{s}$
Data setup time (vs. MDO \downarrow)	tos	tos		2			$\mu \mathrm{s}$
Address hold time Note 2 (vs. MDO \uparrow)	tан	$\mathrm{taH}^{\text {t }}$		2			$\mu \mathrm{s}$
Data hold time (vs. MD0 \uparrow)	toh	toh		2			$\mu \mathrm{s}$
MD0 $\uparrow \rightarrow$ data output float delay time	tof	tDF		0		130	ns
VPP setup time (vs. MD3 \uparrow)	tvps	tvps		2			$\mu \mathrm{s}$
Vod setup time (vs. MD3 \uparrow)	tvos	tvcs		2			$\mu \mathrm{s}$
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (vs. MD1 \uparrow)	tmos	tces		2			$\mu \mathrm{s}$
MDO $\downarrow \rightarrow$ data output delay time	tov	tov	$\mathrm{MD0}=\mathrm{MD1}=\mathrm{V}$ IL			1	$\mu \mathrm{s}$
MD1 hold time (vs. MD0 \uparrow)	tм1н	toen	$\mathrm{tmin}^{+} \mathrm{t}_{\text {M1R }} \geq 50 \mu \mathrm{~s}$	2			$\mu \mathrm{s}$
MD1 recovery time (vs. MD0 \downarrow)	tm1R	tor		2			$\mu \mathrm{s}$
Program counter reset time	tpCR	-		10			$\mu \mathrm{s}$
CL1 input high-, low-level width	txh, txL	-		0.125			$\mu \mathrm{s}$
CL1 input frequency	fcc	-				4.19	MHz
Initial mode set time	t	-		2			$\mu \mathrm{s}$
MD3 setup time (vs. MD1 \uparrow)	tмз	-		2			$\mu \mathrm{s}$
MD3 hold time (vs. MD1 \downarrow)	tмзн	-		2			$\mu \mathrm{s}$
MD3 setup time (vs. MD0 \downarrow)	tm3sR	-	When program memory is read	2			$\mu \mathrm{s}$
Address Note $2 \rightarrow$ data output delay time	tdad	tacc	When program memory is read			2	$\mu \mathrm{s}$
Address Note ${ }^{2} \rightarrow$ data output hold time	thad	tor	When program memory is read	0		130	ns
MD3 hold time (vs. MD0 \uparrow)	tмзнR	-	When program memory is read	2			$\mu \mathrm{s}$
MD3 $\downarrow \rightarrow$ data output float delay time	tdfr	-	When program memory is read			2	$\mu \mathrm{s}$

Notes 1. Symbol of corresponding μ PD27C256A
2. The internal address signal is incremented by one at the rising edge of the fourth CL1 input and is not connected to a pin.

Program Memory Write Timing

Program Memory Read Timing

10. CHARACTERISTICS CURVES (REFERENCE VALUE)

11. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUE)

fcc vs T_{A} (RC oscillation, $\mathrm{R}=\mathbf{2 2 k} \Omega, \mathrm{C}=\mathbf{2 2} \mathrm{pF}$)

12. PACKAGE DRAWINGS

42PIN PLASTIC SHRINK DIP (600 mil)

NOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	39.13 MAX.	1.541 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	0.9 MIN.	0.035 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	15.24 (T.P.)	0.600 (T.P.)
L	13.2	0.520
M	$0.25_{-0.0}^{+0.10}$	$0.010_{-0.004}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P42C-70-600A-1

44 PIN PLASTIC QFP ($\square 10$)

NOTE
Each lead centerline is located within 0.16 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	13.2 ± 0.2	$0.520_{-0.009}^{+0.008}$
B	10.0 ± 0.2	$0.394_{-0.009}^{+0.008}$
C	10.0 ± 0.2	$0.394_{-0.009}^{+0.008}$
D	13.2 ± 0.2	$0.520_{-0.009}^{+0.008}$
F	1.0	0.039
G	1.0	0.039
H	$0.37+0.08$	$0.015_{-0.004}^{+0.003}$
I	0.16	0.007
J	0.8 (T.P.)	0.031 (T.P.)
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.17_{-0.05}^{+0.06}$	$0.007_{-0.003}^{+0.002}$
N	0.10	0.004
P	2.7	0.106
Q	0.125 ± 0.075	0.005 ± 0.003
R	$3^{\circ}+7_{-3^{\circ}}^{\circ}$	$3^{\circ}{ }_{-3^{\circ}} 7^{\circ}$
S	3.0 MAX.	0.119 MAX.

13. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD75P0116 under the following recommended conditions.
For the details on the recommended soldering conditions, refer to Information Document Semiconductor Device Mounting Technology Manual (C10535E).

For the soldering methods and conditions other than those recommended, consult NEC.

Table 13-1. Soldering Conditions of Surface Mount Type
μ PD75P0116GB-3BS-MTX: 44-pin plastic QFP ($10 \times 10 \mathrm{~mm}, 0.8-\mathrm{mm}$ pitch)

Soldering method	\quad Soldering conditions	Symbol of recommended condition
Infrared reflow	Package peak temperature: $235{ }^{\circ} \mathrm{C}$, Time: 30 seconds max. $\left(210{ }^{\circ} \mathrm{C}\right.$ min.), Number of times: 3 max.	IR35-00-3
VPS	Package peak temperature: $215{ }^{\circ} \mathrm{C}$, Time: 40 seconds max. $\left(200{ }^{\circ} \mathrm{C}\right.$ min.), Number of times: 3 max.	VP15-00-3
Wave soldering	Soldering bath temperature: $260{ }^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Number of times: 1 Preheating temperature: $120{ }^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per side of device)	-

Caution Do not use two or more soldering methods in combination (except the partial heating method).

Table 13-2. Soldering Conditions of Insertion Type
μ PD75P0116CU: 42-pin plastic Shrink DIP (600 mil, 1.778-mm pitch)

Soldering method	Soldering conditions
Wave soldering (pin only)	Soldering bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max.
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin)

Caution Apply wave soldering to the pins only. Be careful not to allow solder jet to come into direct contact with the body of the chip.

APPENDIX A. FUNCTION LIST OF μ PD750008, 750108, AND 75P0116

Parameter		μ PD750008	μ PD750108	μ PD75P0116
Program memory		Mask ROM 0000H-1FFFH (8192×8 bits)		One-time PROM 0000H-3FFFH (16384×8 bits)
Data memory		$\begin{aligned} & \hline 000 \mathrm{H}-1 \mathrm{FFH} \\ & (512 \times 4 \mathrm{bits}) \end{aligned}$		
CPU		75XL CPU		
General register		(4 bits $\times 8$ or 8 bits $\times 4$) $\times 4$ banks		
Main system clock oscillation circuit		Crystal/ceramic oscillation circuit	RC oscillation circuit (external resistor and capacitor)	
Start-up time after reset		$2^{17} / f x, 2^{15 / f x}$ (Selected by mask option)	56/fcc fixed	
Wait time after releasing STOP mode due to interrupt occurrence		$2^{20 / f x,} 2^{17 / f x,} 2^{15 / f x}, 2^{13 / f x}$ (Selected by setting BTM)	29/fcc, no wait (Selected by mask option)	29/fcc fixed
Subsystem clock oscillation circuit		Crystal oscillation circuit		
Instruction execution time	When main system clock is selected	- 0.95, 1.91, 3.81, $15.3 \mu \mathrm{~s}$ (at $\mathrm{fx}=4.19-\mathrm{MHz}$ operation) - 0.67, 1.33, 2.67, $10.7 \mu \mathrm{~s}$ (at $\mathrm{fx}=6.0-\mathrm{MHz}$ operation)	$\cdot 4,8,16,64 \mu \mathrm{~s}$ (at fcc $=1.0 \mathrm{MHz}$ operation) $\cdot 2,4,8,32 \mu \mathrm{~s}$ (at fcc $=2.0 \mathrm{MHz}$ operation)	
	When subsystem clock is selected	$122 \mu \mathrm{~s}$ (at 32.768 kHz operation)		
I/O port	CMOS input	8 (on-chip pull-up resistors can be specified in software: 7)		
	CMOS input/output	18 (on-chip pull-up resistors can be specified in software)		
	N -ch open drain input/output	8 (on-chip pull-up resistors can be specified in software), Withstand voltage is 13 V		8 (no mask option) Withstand voltage is 13 V .
	Total	34		
Timer		4 channels - 8-bit timer counter: 1 channel - 8-bit timer/event counter: 1 channel - Basic interval timer/ watchdog timer: 1 channel - Watch timer: 1 channel	4 channels - 8 -bit timer counter (with watch timer output function): 1 channel - 8-bit timer/event counter: 1 channel - Basic interval timer/watchdog timer: 1 channel - Watch timer: 1 channel	
Serial interface		3 modes are available - 3-wire serial I/O mode ... MSB/LSB can be selected for transfer top bit - 2-wire serial I/O mode - SBI mode		
Clock output (PCL)		- Ф, 524, 262, 65.5 kHz (Main system clock: at $4.19-\mathrm{MHz}$ operation) - Ф, 750, 375, 93.8 kHz (Main system clock: at $6.0-\mathrm{MHz}$ operation)	- $\Phi, 125,62.5,15.6 \mathrm{kHz}$ (main system clock: at $1.0-\mathrm{MHz}$ operation) - $\Phi, 250,125,31.3 \mathrm{kHz}$ (main system clock: at $2.0-\mathrm{MHz}$ operation)	
Buzzer outp	(BUZ)	- 2, 4, 32 kHz (Main system clock: at $4.19-\mathrm{MHz}$ operation or subsystem clock: at $32.768-\mathrm{kHz}$ operation) - 2.93, $5.86,46.9 \mathrm{kHz}$ (Main system clock: at $6.0-\mathrm{MHz}$ operation)	- 2, 4, 32 kHz (Subsystem clock: at 32.7 - 0.488, 0.977, 7.813 kHz (Main system clock: at 1.0 - 0.977, $1.953,15.625 \mathrm{kHz}$ (Main system clock: at 2.	$68-\mathrm{kHz}$ operation) - MHz operation) -MHz operation)

Parameter	μ PD750008	μ PD750108	μ PD75P0116
Vectored interrupt	External: 3 , internal: 4		
Test input	External: 1, internal: 1		
Operation supply voltage	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		
Package	- 42-pin plastic shrink DIP (600 mil, 1.778 -mm pitch) - 44-pin plastic shrink QFP ($10 \times 10 \mathrm{~mm}, 0.8$ - mm pitch)		

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD75P0116. The 75XL series uses a common relocatable assembler, in combination with a device file matching each machine.

RA75X relocatable assembler	Host machine			Part number (product name)
		OS	Supply medium	
	PC-9800 series	MS-DOS ${ }^{\text {™ }}$	3.5" 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver.6.2 }}$	5" 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{\text {TM }}$	Refer to OS for	3.5" 2HC	μ S7B13RA75X
	or compatible	IBM PCs	5" 2HC	μ S7B10RA75X

Device file	Host machine			Part number (product name)
		OS	Supply medium	
	PC-9800 series	MS-DOS	3.5" 2HD	μ S5A13DF750008
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver.6.2 Note }}$	5" 2HD	μ S5A10DF750008
	IBM PC/AT	Refer to OS for	3.5" 2HC	μ S7B13DF750008
	or compatible	IBM PCs	5" 2HC	μ S7B10DF750008

Note Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swap function, but it does not work with this software.

Remark The operation of the assembler and device file is guaranteed only on the above host machines and OSs.

PROM Write Tools

Hardware	PG-1500	A stand-alone system can be configured of a single-chip microcomputer with on-chip PROM when connected to an auxiliary board (companion product) and a programmer adapter (separately sold). Alternatively, a PROM programmer can be operated on a host machine for programming. In addition, typical PROMs in capacities ranging from 256 K to 4 M bits can be programmed.			
	PA-75P008CU	This is a PROM programmer adapter for the μ PD75P0116CU/GB. It can be used when connected to a PG-1500.			
Software	PG-1500 controller	Establishes serial and parallel connections between the PG-1500 and a host machine for hostmachine control of the PG-1500.			
		Host machine			Part number (product name)
			OS	Supply medium	
		PC-9800 Series	$\begin{aligned} & \text { MS-DOS } \\ & \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2 \text { Note }} \end{aligned}$	3.5" 2HD	μ S5A13PG1500
				5" 2HD	μ S5A10PG1500
		IBM PC/AT or compatible	Refer to OS for IBM PCs	3.5" 2HD	μ S7B13PG1500
				5" 2HC	μ S7B10PG1500

Note Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swapping function, but it does not work with this software.

Remark Operation of the PG-1500 controller is guaranteed only on the above host machine and OSs.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P0116. Various system configurations using these in-circuit emulators are listed below.

Hardware	IE-75000-R ${ }^{\text {Note }} 1$	The IE-75000-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems that use 75X or 75XL Series products. For development of the μ PD750108 subseries, the IE-75000-R is used with a separately sold emulation board IE-$75300-\mathrm{R}-\mathrm{EM}$ and emulation probe EP-75008CU-R or EP-75008GB-R. These products can be applied for highly efficient debugging when connected to a host machine and PROM programmer. The IE-75000-R can include a connected emulation board (IE-75000-R-EM).			
	IE-75001-R	The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems that use 75 X or 75 XL Series products. The IE-75001-R is used with a separately sold emulation board IE-75300-R-EM and emulation probe EP-75008CU-R or EP-75008GB-R. These products can be applied for highly efficient debugging when connected to a host machine and PROM programmer.			
	IE-75300-R-EM	This is an emulation board for evaluating application systems that use the μ PD750108 subseries. It is used in combination with the IE-75000-R or IE-75001-R in-circuit emulator.			
	EP-75008CU-R	This is an emulation probe for the μ PD75P0116CU. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.			
	$\begin{aligned} & \text { EP-75008GB-R } \\ & \text { EV-9200G-44 } \end{aligned}$	This is an emulation probe for the μ PD75P0116GB. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM. It includes a 44-pin conversion socket EV-9200G-44 to facilitate connections with various target systems.			
Software	IE control program	This program can control the IE-75000-R or IE-75001-R on a host machine when connected to the IE-75000-R or IE-75001-R via an RS-232-C or Centronics I/F.			
		Host machine			Part number (product name)
			OS	Supply medium	
		PC-9800 series	$\begin{aligned} & \text { MS-DOS } \\ & \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver.6.2 }} \end{aligned}$	3.5" 2HD	μ S5A13IE75X
				5" 2HD	μ S5A10IE75X
		IBM PC/AT or compatible	Refer to OS for IBM PCs	3.5" 2HC	μ S7B13IE75X
				5" 2HC	μ S7B10IE75X

Notes 1. This is a service part provided for maintenance purpose only.
2. Ver. 5.00 and the upper versions of Ver. 5.00 are provided with a task swapping function, but it does not work with this software.

Remarks 1. Operation of the IE control program is guaranteed only on the above host machine and OSs.
2. The μ PD750108 subseries consists of the μ PD750104, 750106, 750108 and 75P0116.

OS for IBM PCs

The following operating systems for the IBM PC are supported.

OS	Version
PC DOS	M
	Ver.3.1 to Ver.6.3 J6.1/V Note to J6.3/VNote
MS-DOS	Ver.5.0 to Ver.6.22 5.0/VNote to J6.2/VNote IBM DOS ${ }^{\text {TM }}$

Note Supports English version only.

Caution Ver 5.0 and above include a task swapping function, but this software is not able to use that function.

APPENDIX C. RELATED DOCUMENTS

Some of the following related documents are preliminary. This document, however, is not indicated as preliminary.

Device Related Documents

Document name	Document No.	
	Japanese	English
μ PD750104, 750106, 750108, 750104(A), 750106(A), 750108(A) Data Sheet	U12301J	Planned
μ PD75P0116 Data Sheet	U12603J	This document
μ PD750108 User's Manual	U11330J	U11330E
μ PDD750008, 750108 Instruction List	U11456J	-
75XL Series Selection Guide	U10453J	U10453E

Development Tool Related Documents

Document name			Document No.	
			Japanese	English
Hardware	IE-75000 R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	U11354E
	EP-750008CU-R User's Manual		EEU-699	EEU-1317
	EP-750008GB-R User's Manual		EEU-698	EEU-1305
	PG-1500 User's Manual		U11940J	EEU-1335
Software	RA75X Assembler Package User's Manual	Operation	EEU-731	EEU-1346
		Language	EEU-730	EEU-1363
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) Base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) Base	EEU-5008	U10540E

Other Documents

Document name	Document No.	
	Japanese	English
IC Package Manual	C10943X	C10535E
Semiconductor Device Mounting Technology Manual	C10535J	C11531E
Quality Grades on NEC Semiconductor Devices	C11531J	C10983E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	-
Static Electricity Discharge (ESD) Test	MEM-539	MEI-1202
Semiconductor Devices Quality Guarantee Guide	C11893J	-
Guide for Products Related to Microcomputer: Other Companies	C11416J	

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

[MEMO]

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
 IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

