MOS INTEGRATED CIRCUIT μ PD17071GB-012

4-BIT SINGLE-CHIP MICROCONTROLLER WITH PLL FREQUENCY
 SYNTHESIZER CONTROLLER FOR PORTABLE FM/AM RADIO AND TV

DESCRIPTION

The μ PD17071GB-012 is a CMOS microcontroller with an on-chip PLL frequency synthesizer for receiving international FM and AM and Japanese TV broadcasting.

In addition, because it includes a prescaler (230 MHz MAX.), IF counter, and LCD controller/driver, it constitutes a high-performance, multi-function FM, AM, or TV tuner on a single chip.

Housed in a 56-pin QFP and driven by two dry cells at a low voltage (VDd = 1.8 to 3.6 V), the μ PD17071GB-012 is ideal for creating a compact portable clock radio and radio cassette recorder.

FEATURES

- Preset memory

Three bands: FM, AM, and Japanese TV (1 to 12 channels)
10 stations for each band, totaling 30 stations

- Last channel memory

One station for each band, totaling 3 stations

- Tuning function
- Manual seek/auto seek
- Auto store memory
- Preset memory call
- Watch function

12-hour or 24-hour indication

- Alarm function

Outputs alarm sound at set time every day

- Sleep timer function

Turns off radio after set time
(Time can be set in a range of 30 to 120 minutes in units of 30 minutes.)

- Low-voltage operation
$V_{D D}=1.8$ to 3.6 V
- LCD controller/driver
(1/4 duty, 1/2 bias, 3.1-V driven, frame frequency: 62.5 Hz)

ORDERING INFORMATION

Part Number	Package
μ PD17071GB-012-1A7	$56-$ pin plastic QFP $(10 \times 10 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

FUNCTIONAL OUTLINE
Receive frequency, channel space, reference frequency, intermediate frequency, station detection mode

Region	Band	Receive Frequency	Channel Space	Reference Frequency	Intermediate Frequency	Station Detection Mode
Japan	FM	76.0 to 90.0 MHz	100 kHz	25 kHz	-10.71 MHz	IF only
						IF and SD
		76.0 to 108.0 MHz	100 kHz	25 kHz	-10.71 MHz	IF only
						IF and SD
	AM	522 to 1629 kHz	9 kHz	3 kHz	450 kHz	IF only
						IF and SD
					459 kHz	IF only
						IF and SD
					10.71 MHz	IF only
						IF and SD
	TV	1 to 12 ch	-	25 kHz	-10.71 MHz	IF only
						IF and SD
U.S.A.	FM	87.5 to 107.9 MHz	200 kHz	25 kHz	10.71 MHz	IF only
						IF and SD
			100 kHz	25 kHz	10.71 MHz	IF only
						IF and SD
	AM	530 to 1710 kHz	10 kHz	5 kHz	450 kHz	IF only
						IF and SD
					460 kHz	IF only
						IF and SD
					10.71 MHz	IF only
						IF and SD
China	FM	87.0 to 108.0 MHz	100 kHz	25 kHz	10.71 MHz	IF only
						IF and SD
			50 kHz	25 kHz	10.71 MHz	IF only
						IF and SD
	AM	522 to 1611 kHz	9 kHz	3 kHz	450 kHz	IF only
						IF and SD
					10.71 MHz	IF only
						IF and SD
Europe 1	FM	87.5 to 108.0 MHz	50 kHz	25 kHz	10.71 MHz	IF only
						IF and SD
	AM	530 to 1620 kHz	10 kHz	5 kHz	450 kHz	IF only
					459 kHz	IF only
					10.71 MHz	IF only
		522 to 1629 kHz	9 kHz	3 kHz	450 kHz	IF only
						IF and SD
					459 kHz	IF only
						IF and SD
					10.71 MHz	IF only
						IF and SD
Europe 2	FM	87.5 to 108.0 MHz	50 kHz	25 kHz	10.71 MHz	IF only
						IF and SD
	AM	530 to 1620 kHz	10 kHz	5 kHz	450 kHz	IF only
					459 kHz	IF only
					10.71 MHz	IF only
		522 to 1629 kHz	9 kHz	3 kHz	450 kHz	IF only
						IF and SD
					459 kHz	IF only
						IF and SD
					10.71 MHz	IF only
						IF and SD

Remark The initial values in the preset memory differ between "Europe 1" and "Europe 2".

Setting of Pin Input				Setting of Initialization Diode Switch			
$\begin{gathered} \hline 9 \mathrm{k} / 10 \mathrm{k} \\ \mathrm{SD} \\ \hline \end{gathered}$	AREAO	AREA1	Japan Wide 100k/200k	CHINA BAND	IFSELO	IFSEL1	SD_IF
Don't care	L	L	L	0	Don't care	Don't care	0
Don't care	L	L	L	0	Don't care	Don't care	1
Don't care	L	L	H	0	Don't care	Don't care	0
Don't care	L	L	H	0	Don't care	Don't care	1
Don't care	L	L	Don't care	0	0	0	0
Don't care	L	L	Don't care	0	0	0	1
Don't care	L	L	Don't care	0	1	0	0
Don't care	L	L	Don't care	0	1	0	1
Don't care	L	L	Don't care	0	0	1	0
Don't care	L	L	Don't care	0	0	1	1
Don't care	L	L	Don't care	0	Don't care	Don't care	0
Don't care	L	L	Don't care	0	Don't care	Don't care	1
Don't care	L	H	L	0	Don't care	Don't care	0
Don't care	L	H	L	0	Don't care	Don't care	1
Don't care	L	H	H	0	Don't care	Don't care	0
Don't care	L	H	H	0	Don't care	Don't care	1
Don't care	L	H	Don't care	0	0	0	0
Don't care	L	H	Don't care	0	0	0	1
Don't care	L	H	Don't care	0	1	0	0
Don't care	L	H	Don't care	0	1	0	1
Don't care	L	H	Don't care	0	0	1	0
Don't care	L	H	Don't care	0	0	1	1
Don't care	Don't care	Don't care	L	1	Don't care	Don't care	0
Don't care	Don't care	Don't care	L	1	Don't care	Don't care	1
Don't care	Don't care	Don't care	H	1	Don't care	Don't care	0
Don't care	Don't care	Don't care	H	1	Don't care	Don't care	1
Don't care	Don't care	Don't care	Don't care	1	0	0	0
Don't care	Don't care	Don't care	Don't care	1	0	0	1
Don't care	Don't care	Don't care	Don't care	1	0	1	0
Don't care	Don't care	Don't care	Don't care	1	0	1	1
Don't care	H	L	Don't care	0	Don't care	Don't care	0
Don't care	H	L	Don't care	0	Don't care	Don't care	1
L	H	L	Don't care	0	0	0	0
L	H	L	Don't care	0	1	0	0
L	H	L	Don't care	0	0	1	0
H	H	L	Don't care	0	0	0	0
Don't care	H	L	Don't care	0	0	0	1
H	H	L	Don't care	0	1	0	0
Don't care	H	L	Don't care	0	1	0	1
H	H	L	Don't care	0	0	1	0
Don't care	H	L	Don't care	0	0	1	1
Don't care	H	H	Don't care	0	Don't care	Don't care	0
Don't care	H	H	Don't care	0	Don't care	Don't care	1
L	H	H	Don't care	0	0	0	0
L	H	H	Don't care	0	1	0	0
L	H	H	Don't care	0	0	1	0
H	H	H	Don't care	0	0	0	0
Don't care	H	H	Don't care	0	0	0	1
H	H	H	Don't care	0	1	0	0
Don't care	H	H	Don't care	0	1	0	1
H	H	H	Don't care	0	0	1	0
Don't care	H	H	Don't care	0	0	1	1

Remarks 1. H: High-level input, L: Low-level input
2. $0:$ Open, $1:$ Short

INITIAL VALUE OF PRESET MEMORY

The contents of the preset memory on first power application differ depending on the destination region, as follows:

Destination	Band		Preset Memory										
			Last	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
Japan	FM	(MHz)	77.5	77.5	80.0	82.5	85.0	87.5	76.0	90.0	76.0	76.0	76.0
	FM wide	(MHz)	76.0	76.0	90.0	98.0	106.0	108.0	76.0	90.0	76.0	76.0	76.0
	AM	(kHz)	603	603	810	999	1440	1620	522	522	522	522	522
	TV	(ch)	1 ch	1 ch	3 ch	4 ch	8 ch	12 ch	1 ch				
U.S.A.	FM100 k	(MHz)	87.5	87.5	90.0	98.0	106.0	108.0	87.5	87.5	87.5	87.5	87.5
	FM200 k	(MHz)	87.5	87.5	90.1	98.1	106.1	107.9	87.5	87.5	87.5	87.5	87.5
	AM	(kHz)	530	530	600	1000	1200	1440	1710	530	530	530	530
China	FM	(MHz)	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0
	AM	(kHz)	522	522	522	522	522	522	522	522	522	522	522
Europe 1	FM	(MHz)	87.5	87.5	90.0	98.0	106.0	108.0	87.5	87.5	87.5	87.5	87.5
	AM9 k	(kHz)	522	522	603	999	1440	1602	522	522	522	522	522
	AM10 k	(kHz)	530	530	600	1000	1400	1610	530	530	530	530	530
Europe 2	FM	(MHz)	87.5	87.5	90.1	98.1	106.1	108.0	87.5	87.5	87.5	87.5	87.5
	AM9 k	(kHz)	522	522	603	999	1440	1602	522	522	522	522	522
	AM10 k	(kHz)	530	530	600	1000	1400	1610	530	530	530	530	530

Remark The initial values in the preset memory differ between "Europe 1" and "Europe 2".

Tuning Function

(1) Manual tuning

Type	Description
Manual up Manual down	Increments or decrements frequency one step each time the corresponding key is pressed.

(2) Auto tuning

Type	Description
Seek up Seek down	Searches station in up or down direction and, when station has been found, holds frequency of station.

(3) Preset memory

Stores 10 stations for each band (FM, AM, and TV) by using 10 buttons, totaling 30 stations.
(4) Preset memory call

Receives the frequency written to the preset memory.
(5) Auto store memory

Searches all the frequencies in the received band, and automatically writes the frequencies of stations to the preset memory.
(6) Last channel memory

Stores the frequency of the station received last in each of the three bands (FM, AM, and TV), totaling three stations.

WATCH FUNCTION

(1) 12-hour (with "AM" and "PM" indication) or 24-hour indication

The time indication mode is automatically selected according to the selected destination region.
(2) Time on power application

On power application, the time is set to "00:00" (midnight) and counting is started.

TIMER FUNCTION

(1) Alarm function

Outputs an alarm sound at set time every day.
(2) Sleep timer

Automatically turns off radio after 30 to 120 minutes (the time can be set in units of 30 minutes).

OTHERS

(1) Outputs beep sound to confirm valid momentary key input.
(2) Watch/frequency (mode) indication selection
(3) Mute control output
(4) Key lock function

PIN CONFIGURATION (Top View)

56-pin plastic QFP ($10 \times 10 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch $)$ μ PD17071GB-012-1A7

Remark (): Pins for μ PD17071GB-XXX-1A7

TABLE OF CONTENTS

1. PIN FUNCTION 9
2. CONFIGURATION OF KEY MATRIX 15
2.1 Layout of Initialization Diode Key Matrix 15
2.2 Layout of Momentary Key Matrix 15
2.3 Connection of Key Matrix 16
2.4 Description of Key Matrix 17
2.4.1 Initialization diode matrix 17
2.4.2 Momentary key 20
2.5 Alarm Function 28
2.6 Key Lock Function 29
3. LCD DISPLAY 30
3.1 LCD Panel 30
3.2 Font 30
3.3 LCD Pattern 30
3.4 LCD Pin Assignment 31
3.5 Display Description 33
3.6 Display Example 34
4. MUTE OUTPUT TIMING CHART 36
4.1 Manual up/down (operates by pressing key and releasing within 0.5 sec) 36
4.2 Auto up/down (operates by holding down key for 0.5 sec or longer) 36
4.3 Calling Preset Memory 37
4.4 Band Selection 37
4.5 CE Pin 37
4.5.1 High level to low level 37
4.5.2 Low level to high level 37
4.6 Sleep Timer 38
5. ELECTRICAL SPECIFICATIONS (PRELIMINARY) 39
6. PACKAGE 42

1. PIN FUNCTION

Pin No.	Symbol	Pin Name	Description			I/O Form
1	MUTE	Mute output	Outputs a mute control signal. Outputs a high level in the following cases: - When radio is turned ON/OFF - When the frequency band is changed - During manual tuning - During auto tuning - When the preset memory is called - In power-off state			CMOS push-pull output
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	BAND1 BAND2	Band select signal output	These pins output band select signals. The output of each band is as follows:			CMOS push-pull output
			Pin	BAND1	BAND2	
			AM	0	0	
			FM	1	0	
			TV (1 to 3 ch)			
			TV (4 to 12 ch)	1	1	
			(0: Low level, 1: High le			
$\begin{aligned} & 4 \\ & \mid \\ & 9 \end{aligned}$	$\begin{gathered} \text { KS1 } \\ \text { । } \\ \text { KS6 } \end{gathered}$	Key source output	Key source output pins of a	matrix		CMOS push-pull output
$\begin{gathered} 10 \\ \text { \| } \\ 13 \end{gathered}$	$\begin{gathered} \text { K0 } \\ \text { । } \\ \text { K3 } \end{gathered}$	Key return signal input	These pins input the key return signals of a key matrix. They are connected to an internal pull-down resistor.			Input
14	KEYLOCK	Key lock signal input	This pin inputs a key lock signal. The signal input to this pin is used to lock or unlock a momentary key. Input a signal to this pin as follows: - High level: To lock the momentary key. All momentary keys are invalid while the keys are locked. - Low level: To unlock the keys. Note, however, that a high level or low level of less than 32 ms is invalid.			Input
15	STEREO	Stereo signal input	This pin inputs a stereo signal. Reception of stereo broadcasting is identified by the signal input to this pin. Input a low level to this pin while stereo broadcasting is being received.			Input

Pin No.	Symbol	Pin Name	Description	I/O Form
16	$\begin{gathered} 9 \mathrm{k} / 10 \mathrm{k} \\ \text { /SD } \end{gathered}$	AM setting input/ SD signal input	This pin inputs an SD (Station Detector) signal. When "Europe 1" or "Europe 2" is selected as the destination region, this pin can be also used to input setting of a channel space in an AM band. (1) Setting of channel space in AM band for "Europe 1" and "Europe 2" (9 k/10k) This setting is valid only when "Europe 1" or "Europe 2" is selected as the destination region. The setting is read only on power application (power-ON reset), or when the signal input to the CE pin (pin 50) goes high (CE reset); otherwise, it is ignored. Input a signal to this pin as follows: - High level: Channel space 9 kHz - Low level: Channel space 10 kHz Note that the setting of this pin is invalid when initialization diode switch $S D _I F=1$, and the channel space is 9 kHz . (2) Input of SD signal (SD) When a station has been detected this is identified by the signal input to this pin and the frequency counter when initialization diode switch SD_IF = 1 . Input a high level to this pin when a station is detected. However, a signal input for less than 32 ms is invalid.	Input
17	FMIFC /AMIFC	FM/AM intermediate frequency input	This pin inputs an intermediate frequency (IF) in an FM or AM band. The signal input to this pin is used to identify a station. When initialization diode switch SD_IF = 1, however, the signal input to this pin and the signal input to the SD pin (pin 16) are used to identify a station. The range of the input frequency in which detection of a station is identified is as follows: The conditions of input frequency ranges <1> and <2> vary as follows depending on the setting of initialization diodes IFSEL1 and IFSEL2. (0: Open, 1: Short)	Input
18	GND	Ground	Ground pin	

Pin No.	Symbol	Pin Name	Description				I/O Form
19	EO	Error out	This pin outputs PLL (Phase Locked Loop) errors. It outputs the result of comparison between the frequency input to the VCOH (pin 21) or VCOL (pin 20) and a set frequency. - Input frequency > Set frequency: High level - Input frequency < Set frequency: Low level - Input frequency = Set frequency: Floating Connect this pin to a varactor diode via an external LPF (lowpass filter).				CMOS 3-state output
20	VCOL	AM local oscillation input	This pin inputs local os The signal that can be Because an internal A of the input signal with	latio put t Fre \qquad \qquad mpl cap	(VCO is as ange ovide	tput) in an AM band. lows: ut the DC component	Input
21	VCOH	FM local oscillation input	This pin inputs local o band. The signal that Because an internal A of the input signal with	$\begin{aligned} & \text { latior } \\ & \text { n be } \\ & 1 \mathrm{~Hz}) \\ & \hline \end{aligned}$ capə	(VCO this p Mini ovide	tput) in an FM and TV is as follows: ut the DC component	Input
22	REG0	Power supply pin	This is a voltage regulator pin for PLL. Connect this pin to GND via a $0.1-\mu \mathrm{F}$ capacitor. It outputs a low level when the radio is off.				-
23	VDD	Power supply pin	This is a power supply pin. It supplies a voltage of $\mathrm{VDD}=1.8$ to $3.6 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=-20\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ to operate all the functions. Do not apply a voltage higher than that applied to the Vod pin to any pin other than the Vdd pin.				-
24	Xout	Crystal resonator	These pins are used to connect a crystal resonator for system clock oscillation. Connect a $75-\mathrm{kHz}$ crystal resonator across these pins. The accuracy of the watch is affected only by the oscillation frequency of the crystal resonator.				CMOS push-pull
25	XIN						-

Pin No.	Symbol	Pin Name	Description	I/O Form
26	REG1	Power supply pin	This pin is a voltage regulator pin for oscillation circuit. Connect this pin to GND via a $0.1-\mu \mathrm{F}$ capacitor.	-
$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	REGlco0 CAPLcd0 CAPlcd1 REGlco1	LCD driving power supply pins	- REGlco1 and REGlco0 These pins supply the LCD driving voltage. - CAPlco1 and CAPıco0 Connect a capacitor for a doubler circuit across these pins to create an LCD driving voltage. Connect the capacitor as shown below to create the doubler circuit. Caution The value of the LCD drive voltage changes if the values of C1, C2, and C3 are changed because of the configuration of the doubler circuit.	-
$\begin{gathered} 31 \\ \text { । } \\ 34 \end{gathered}$	$\begin{gathered} \text { COMO } \\ \text { । } \\ \text { COM3 } \end{gathered}$	LCD common signal output	These pins output common signals to an LCD panel. They output 60 dots on the LCD panel by creating a matrix with LCD0 through LCD14 pins (pins 35 through 49).	CMOS push-pull output
$\begin{gathered} 35 \\ \text { । } \\ 49 \\ \hline \end{gathered}$	LCDO $\stackrel{\mid}{\text { LCD14 }}$	LCD segment signal output	These pins outputs segment signals to an LCD panel. They display 60 dots on the LCD panel by creating a matrix with COMO through COM3 pins (pins 31 through 34).	CMOS push-pull output
50	CE	Chip enable	This input pins selects radio operation as follows: - High level Turns ON the radio. - Low level Turns OFF the radio. Note, however, that a high or low level of less than $200 \mu \mathrm{~s}$ is not accepted.	Input
51	NC	No connection	No connection. Externally pull down this pin.	-

Pin No.	Symbol	Pin Name	Description	I/O Form
52	BEEP	BEEP/ALARM output	This pin outputs a key-ON confirmation sound (beep output) and alarm sound. (1) Beep output A pulse of 1.5 kHz is output for about 40 ms in the following cases: - When a valid key is input - While time is adjusted up or down in high-speed mode - During seek up/down (2) Alarm sound output When the time reaches the alarm time set, a 3 kHz pulse is intermittently output approximately every 64 ms , five times after 1 second. The alarm sound is output for 10 minutes from the start of output, or until it is canceled.	CMOS push-pull output
$\begin{aligned} & 53 \\ & 54 \end{aligned}$	AREAO AREA1	Destination region setting input	These pins input setting for the destination region. The setting of these pins is read only on application of VDD (powerON reset) or when the signal input to the CE pin goes high (CE reset); otherwise, it is ignored. Input a signal to these pins as follows: (0: Low level, 1: High level) When initialization diode switch CHINA_BAND $=1$, however, the setting is invalid, and the destination region is China.	Input

Pin No.	Symbol	Pin Name	Description	I/O Form
55	Japan Wide/ 100 k/200 k	FM setting input	This pin inputs an FM receive frequency band and setting of a channe space. The setting differs depending on the destination region. The setting is read only on application of Vdo (power-ON reset) or when the CE pin (pin 50) goes high (CE reset); otherwise, it is ignored. (1) When the destination region is Japan (Japan Wide) Sets an FM receive frequency band. Input as follows: - High-level input: 76.0 to 108.0 MHz - Low-level input: 76.0 to 90.0 MHz (2) When the destination region is the U.S.A. ($100 \mathrm{k} / 200 \mathrm{k}$) Sets the channel space of the FM band. Input as follows: - High-level input: $100-\mathrm{kHz}$ step - Low-level input: 200-kHz step (3) When the destination region is China ($100 \mathrm{k} / 200 \mathrm{k}$) Sets the channel space of the FM band. Input as follows: - High-level input: $50-\mathrm{kHz}$ step - Low-level input: $100-\mathrm{kHz}$ step	Input
56	CLKENA	Watch function selection input	This pin inputs the setting for whether the watch function is used or not. The setting is read only on application of $V_{D D}$ (power-ON reset) or when the CE pin (pin 50) goes high (CE reset); otherwise, it is ignored. Input as follows: - High-level input: Watch function used. - Low-level input: Watch function not used.	Input

2. CONFIGURATION OF KEY MATRIX

2.1 Layout of Initialization Diode Key Matrix

Input Pin (Pin No.)	K0 (10)	K1 (11)	K2 (12)	K3 (13)
Output Pin (Pin No.)				
KS1 (4)	-	CHINA_BAND	TV_ENA	STOPSEL
KS2 (5)	SD_IF	MEMSEL	IFSEL1	IFSEL2

Remark -: Not set

2.2 Layout of Momentary Key Matrix

Input Pin (Pin No.)	K0 (10)	K1 (11)	K2 (12)	K3 (13)
Output Pin (Pin No.)	SLEEP	CHECK	STOP	BAND
KS3 (6)	AUTO STORE	M4	M5	+5
KS4 (7)	MEMORY/AUTO STORE	M1/MEMORY UP	M2	M3
KS5 (8)	MODE	UP	DOWN	ALARM
KS6 (9)				

2.3 Connection of Key Matrix

Momentary key

Initialization diode

\bigoplus Momentary key
\square Initialization diode

2.4 Description of Key Matrix

2.4.1 Initialization diode matrix

The initialization diode matrix determines the function of the μ PD17071GB-012. Be sure to set this diode matrix.
The setting of the diode matrix is read only on application of VDD (power-ON reset), or when the CE pin (pin 50) goes high (CE reset); otherwise, it is ignored.
(1) Switch setting destination region

CHINA_BAND
(2) Switch setting receivable band (valid only when the destination region is Japan)

TV_ENA
(3) Switches setting intermediate frequency of AM band

IFSEL1, IFSEL2
(4) Switch setting station detection identification method SD_IF
(5) Switch setting momentary key for preset memory manipulation MEMSEL
(6) Switch setting momentary key for alarm sound canceling operation STOPSEL

To set these switches, short-circuit (1) or open (0) the corresponding switches on the matrix with a diode. The function of the initialization diode matrix is explained next (in alphabetical order).

Initialization Diode	Function Description		
CHINA_BAND	This switch selects the destination region of the application set. Set this switch as follows:		
	CHINA_BAND	Destination region	
	0	Set by AREA0 and AREA1 pins	
	1	China	
	(0: Open, 1: Short) If China is selected as the region by this switch, the setting of AREAO (pin 53) and AREA1 (pin 54) is invalid.		
$\begin{aligned} & \text { IFSEL1 } \\ & \text { IFSEL2 } \end{aligned}$	This switch sets an intermediate frequency in the AM band. Set it as follows:		
	IFSEL1	Intermediate Frequency of AM Band	
	0	$0 \quad 450 \mathrm{kHz}$	450 kHz
	1	$459 \mathrm{kHz} / 460 \mathrm{kHz}$	
	0	$1 \quad 10.71 \mathrm{MHz}$	10.71 MHz
	1	1 Invalid setting. The intermediate	Invalid setting. The intermediate frequency is 450 kHz .
	(0: Open, 1: Short) When inputting an intermediate frequency to the FMIFC/AMIFC pin (pin 17) when the intermediate frequency is set to " 10.71 kHz ", convert the frequency to 450 kHz before inputting.		
MEMSEL	This switch sets the momentary key for preset memory manipulation. Set it as follows:		
	MEMSEL	Preset memory selection operation	Auto store memory operation
	0	M1 to M5 +5 +5	AUTO STORE key
	1	MEMORY UP key	MEMORY key (hold down for 2 seconds or longer)
	(0: Open, 1: Short)		
SD_IF	This switch selects the method for detecting a station. Set it as follows:		
	SD_IF	Station detection method	
	0	Station detection using frequency counter	
	1	Station detection using frequency counter and SD signal	
	(0: Open, 1: Short)		
STOPSEL	This switch sets a momentary key used to cancel alarm sound output. It is also used to lock or unlock a key. Set it as follows:		
	STOPSEL	Alarm sound output canceling operation	Key locking/unlocking
	0	STOP key	STOP key and MODE key (pressed simultaneously)
	1	ALARM key	$\begin{aligned} & \text { ALARM key and MODE key } \\ & \text { (pressed simultaneously) } \end{aligned}$
	(0: Open, 1: Short)		

| Initialization Diode | Function Description |
| :---: | :--- | :--- |
| TV_ENA | This switch is used to select whether a TV band is received.
 Setting of this switch is valid only when Japan is selected as the destination region.
 Set it as follows:

 TV_ENA
 0 |
| 1 FM/AM Receivable band when Japan is selected as region
 (0: Open, 1: Short) | |

2.4.2 Momentary key

Two momentary keys can be pressed simultaneously only in the following combination.

- STOP and MODE keys to lock or unlock keys
- ALARM and MODE keys to lock or unlock keys
- UP and DOWN keys during seek up/down

Any other combinations of keys is invalid when pressed simultaneously.
The chattering wait time is 48 to 64 ms .
The functions of the momentary keys are explained below (in alphabetical order).

Momentary Key	Function Description
BAND	This key is used to select a band. It is valid when the radio is ON . Each time the BAND key has been pressed, the band is changed as follows: - If Japan is selected as destination region and if initialization diode switch TV_ENA =1 (On initial power application) - Other than above (On initial power application)
CHECK	This key is used to test lighting of the LCD before shipment. By pressing the \square CHECK key, all the segments of the LCD lights for 20 seconds. If the \square CHECK key is pressed again while the LCD is lit, the test is stopped. Any key other than the \square CHECK key is invalid during the testing of LCD lighting.
M1 - M5	These keys are used to call a preset station and to write data to the preset memories. They are valid when the radio is ON and initialization diode switch MEMSEL $=0$. (1) Calling preset memory By pressing any of the \square M1 through \square M5 keys, the corresponding preset station can be called. A preset memory number is indicated for 0.5 second, and the corresponding frequency is selected. Ten preset memories, M1 through M10, each corresponding to a preset station, are available. To call preset memories M6 through M10, or to write data to these preset memories, refer to the description of the \square $+5$ Key. (2) Writing preset memory The contents of a specified preset memory are written when one of the keys \square to \square M5 is pressed in combination with the MEMORY key. For how to write data to the preset memory, refer to the description of the \square key. \square
MEMORY	This key is for writing data to the preset memory and for auto store memory. It is valid when the radio is ON. - When initialization diode switch MEMSEL $=0$ For writing preset memory - When initialization diode switch MEMSEL = 1 For writing preset memory and auto store memory The operation is as follows when initialization diode switch MEMSEL $=1$.

Momentary Key	Function Description
MEMORY	The operation of each key is as follows depending on the write status of the preset memory.
	Key Function description
	- \square - When initialization diode switch MEMSEL $=0$ Data is written to a preset memory and the preset memory write status is released. - When initialization diode switch MEMSEL = 1 This key is invalid.
	- When initialization diode switch MEMSEL $=0$ This key is invalid. - When initialization diode switch MEMSEL = 1 Increments the preset memory to be written by one station. Preset memory M1 is selected next if preset memory M10 is selected.
	- When initialization diode switch MEMSEL $=0$ Releases the preset memory write status. - When initialization diode switch MEMSEL = 1 Writes data to a preset memory and releases the preset memory write status.
	AUTO STORE BAND UP $/$ DOWN Releases the preset memory write status, and performs the operation of the key pressed.
	ALARM CHECK MODE $\boldsymbol{+ 5}$ STOP SLEEP Performs the operation of the key pressed. The preset memory write status continues.
	(2) Auto store memory (when MEMSEL = 1) The auto store memory operation is started by holding down the \square MEMORY key for 2 seconds or longer. During auto store memory operation, this key operates as the AUTO STORE key. For the auto store memory operation, refer to the description on the AUTO STORE key.

Momentary Key	Function Description
MEMORY UP	This key is used to call and write a preset memory. It is valid when the radio is $O N$ and initialization diode switch MEMSEL $=1$. (1) Calling preset memory Each time the MEMORY UP is is pressed, the preset station is incremented by one and called up. The preset memory number is displayed for 0.5 second, and the corresponding frequency is received. - When a preset station is already selected, the preset station is incremented by one and selected. Example: When preset M3 is already selected, this is incremented by one and M4 is selected. When preset M10 is the current selection, M1 is selected next. - If this key is pressed while no preset station is selected, preset M1 is selected. (2) Writing preset memory Data is written to a specified preset memory when this key is used in combination with the \square MEMORY key. For an explanation of how to write data to a preset memory, refer to the description of the \square key. When initialization diode switch MEMSEL $=0$, this key functions as the \square M1 key.
MODE	This key is used to switch the display and the watch adjust mode. It is valid when the watch function is used (when a high level is input to the CLKENA pin (pin 56))., - When radio is ON: For switching display - When radio is OFF: For switching watch adjust mode (1) Display switching (when radio is ON) Each time the MODE key is pressed, the frequency display or watch display is alternately selected. (2) Watch adjust mode switching (when radio is OFF) Each time the MODE key is pressed, the mode is changed as follows: For an explanation of how to adjust the time, refer to the description of the \square UP and \square DOWN keys. The momentary keys are locked by the following key operation: - When STOPSEL = 0: Press the \square STOP key and then the \square MODE key twice. - When STOPSEL = 1: Press the \square ALARM key and then the \square MODE key twice. While keys are locked, no key operation other than that to manipulate key locking is valid. By repeating the key locking operation while the keys are locked, the keys are unlocked. If the momentary keys are locked by input to the KEYLOCK pin (pin 14), the keys cannot be unlocked by a key operation.

Momentary Key	Function Description
+5	This key is used to select preset memory M6 to M10 in combination with the \square M1 to \square keys. It is valid when the radio is ON and initialization diode switch MEMSEL $=0$. When the \square +5 key is pressed, the preset shift status is set. In this status, operating the \square M1 to \square M5 key manipulates preset memory M6 to M10. The preset shift status is released on completion of the operation. If the \square +5 key is pressed again in the preset shift status, the preset shift status is released.
SLEEP	This key is used to set the sleep timer. It is valid when the radio is ON. When the SLEEP key is pressed, the remaining time of the sleep timer is displayed for 10 seconds. The initial value of the remaining time of the sleep timer is 120 minutes. If the SLEEP key is pressed while the remaining time of the sleep timer is displayed, the time is decremented in steps of 30 minutes. (Example 60 minutes $\rightarrow 30$ minutes, 45 minutes $\rightarrow 30$ minutes) If the remaining time reaches 0 minutes, the sleep timer is released. If the radio is turned OFF (CE = low level) while the sleep timer is valid, the sleep timer is released.
STOP	This key is used to cancel output of the alarm sound. It is valid when the watch function is used (when a high level is input to the CLKENA pin (pin 56)). It is valid when initialization diode switch STOPSEL $=0$. (1) Stopping alarm sound output By pressing the STOP key while the alarm sound is output, output of the alarm sound can be stopped. (2) Locking momentary keys (when STOPSEL = 0) Momentary keys can be locked by pressing the \square STOP key and then the \square MODE key twice. For an explanation of how to lock the keys, refer to the description of the \square key.
UP DOWN	This key is used to increment/decrement the receive frequency and adjust the time. - When radio is ON: To increment/decrement receive frequency - When radio is OFF: To adjust time and set alarm time (1) Incrementing/decrementing receive frequency (when radio is ON)

2.5 Alarm Function

The alarm function outputs an alarm sound at specified alarm time every day.
Only one alarm time can be set.
When the watch function is not selected on initialization, the alarm function cannot be used. For initialization of the watch function, refer to the description on the CLKENA pin (pin 56).

(1) Setting of alarm time

To set alarm time, select the alarm time setting mode when the radio is OFF.
Each time the MODE key is pressed when the radio is OFF, the mode is changed as follows:

The alarm time can be adjusted by using the UP and DOWN key in the alarm time setting mode. The operation is as follows in the alarm time setting mode.

Key	Digit to Be Adjusted	Time to Hold Down Key	Operation
UP	Minute digit	Less than 0.5 second	Increments the minute by one each time the key is pressed.
		0.5 second or longer	Increments the minute at a rate of 8 minutes/second until key is released.
DOWN	Hour digit	Less than 0.5 second	Increments the hour by one each time the key is pressed.
		0.5 second or longer	Increments the hour at a rate of 4 hours/second until the key is released.

The initial alarm time on power application is "00:00" (midnight).

(2) Setting/releasing alarm

By pressing the ALARM key, the alarm is set for the time set.
When the time has reached the alarm time set, output of the alarm sound is started.
The alarm can be released by pressing the ALARM key again while the alarm is set.
However, the alarm cannot be set or released in the time adjust mode or alarm time setting mode.

(3) Canceling alarm sound output

Output of the alarm sound is stopped if the key for canceling the alarm sound output is pressed while the alarm sound is being output.
The following key is used as the key for canceling the alarm sound output, depending on the initialization.

- When initialization diode switch STOPSEL $=0$

STOP key

- When initialization diode switch STOPSEL = 1

ALARM key

The output of the alarm sound continues for 10 minutes from the start, or until it is canceled.

2.6 Key Lock Function

The key lock function is to lock the momentary keys and invalidate key operations.
The keys are locked by input to the KEYLOCK pin (pin 14).
When the input to the KEYLOCK pin is low, the keys can also be locked by a key operation.
(1) Locking keys by input to KEYLOCK pin (pin 14)

The momentary keys can be locked by input to the KEYLOCK pin.
The operation of the momentary keys can be manipulated as follows by the pin input.

- High-level input

Locks keys and invalidates all key operations.
Also invalidates the key operation to unlock the keys.

- Low-level input

All the keys perform normally when the keys are pressed.
At this time, the keys can be locked or unlocked by a key operation.

(2) Locking keys by key operation

The keys can be locked or unlocked by a key operation when the input to the KEYLOCK pin (pin 14) is low. If the input to the KEYLOCK pin is high, however, the locked keys cannot be unlocked by a key operation.
The momentary keys are locked by performing the following key lock operation.

- When the keys are locked, they are unlocked when the key lock operation is performed again.
- When the keys are locked, all key operations other than that to unlock the key is invalid.

The following key lock operation is performed, depending on initialization.

- When initialization diode switch STOPSEL $=0$

Press the STOP key and then the MODE key twice.

- When initialization diode switch STOPSEL =1

Press the ALARM key and then the MODE key twice.

3. LCD DISPLAY

3.1 LCD Panel

The configuration of the LCD panel is shown below.

3.2 Font

3.3 LCD Pattern

(1) Connection of segment lines

(2) Connection of common lines

3.4 LCD Pin Assignment

Table 3-1 shows assignment of the LCD pins.
$<1>$ through $<4>$ in the figure and table below indicate the column positions of the 7 -segment digits. "a" through " f " indicate the segments of each digit.

Table 3-1. Assignment of LCD Pins

Segment Common	COM0 (31)	COM1 (32)	COM2 (33)	COM3 (34)
LCDO (35)	AM	ALM	SLEEP	FM
LCD1 (36)	AM	LOCK	-	PM
LCD2 (37)	-	<1>g	<1>e	<1>d
LCD3 (38)	<1>a	<1>b	<1>c	-
LCD4 (39)	<2>f	<2>g	<2>e	<2>d
LCD5 (40)	<2>a	<2>b	<2>c	:
LCD6 (41)	<3>f	<3>g	<3>e	<3>d
LCD7 (42)	$<3>a$	$<3>b$	$<3>c$.
LCD8 (43)	<4>f	<4>g	<4>e	<4>d
LCD9 (44)	<4>a	<4>b	<4>C	E
LCD10 (45)	+5	TV	MHz	kHz
LCD11 (46)	M	ST	-	-
LCD12 (47)	-	-	-	-
LCD13 (48)	-	-	-	-
LCD14 (49)	-	-	-	-

Remarks 1. Numbers in brackets () are pin numbers.
2. -: Not used

3.5 Display Description

Symbol	
AM	Lights when the AM band is selected in the radio mode. Lights only when a frequency is displayed.
AM	Lights when the time is in the morning in the 12-hour mode.
ALM	Lights while the alarm is set. Always lights while alarm time is set, and goes off while time is being adjusted.
FM	Lights when the FM band is selected in the radio mode. Lights only when a frequency is displayed.
kHz	Lights when a frequency is displayed or AM band is selected in the radio mode.
LOCK	Lights when key locking is valid.
M	Lights when the preset memory is manipulated in the radio mode. Also lights at 1 Hz when the preset memory is enabled to be written.
MHz	Lights when a frequency is displayed and the FM band is selected in the radio mode.
+5	Lights when +5 (preset memory shift) is valid in the radio mode.
PM	Lights when the time is in the afternoon in the 12-hour mode.
SLEEP	Lights when the sleep timer is set.
ST	Lights when the stereo input is low in the radio mode. TV Lights when the TV band is selected in the radio mode.

3.6 Display Example

(1) Initial display (without time set, 12-hour display)

(2) Initial display (without time set, 24-hour display)

(3) Watch display (during FM band selection)

This is an example of display with " M " and " +5 " lit while a stereo station is selected at 12:34 a.m.
The "FM" and "AM" indications are not displayed to avoid confusion with time when time is displayed in the radio mode.
(4) Frequency display (during FM band selection)

FM

(5) Frequency display (during AM band selection)

(6) Frequency display (during TV band selection)

(7) Sleep timer display

4. MUTE OUTPUT TIMING CHART

This section describes the timing of the mute output.
$<1>$ through $<7>$ in the timing charts indicate the time required for the respective processing, as follows:
<1> Key ON chattering wait time
<2> Mute leading time
$<3>$ Division ratio setting and display contents updating time
<4> Mute trailing time
<5> Scan time
<6> PLL lock wait time
<7> Key OFF chattering wait time

4.1 Manual up/down (operates by pressing key and releasing within 0.5 sec)

Time of $<4>$ is 625 to 750 ms at the band edge.

4.2 Auto up/down (operates by holding down key for 0.5 sec or longer)

Scan time of $<5>$ is as follows depending the received band.
FM: 40 to 48 ms
AM: 24 to 32 ms
TV: 496 to 504 ms
Time of $<5>$ is 500 ms , and time of $<4>$ is 625 to 750 ms at the band edge.

4.3 Calling Preset Memory

Time of $<2>$ to $<4>$ is the tuner mute time.

4.4 Band Selection

4.5 CE Pin

4.5.1 High level to low level

4.5.2 Low level to high level

The tuner mute time is the same as 4.3 Calling Preset Memory.

4.6 Sleep Timer

5. ELECTRICAL SPECIFICATIONS (PRELIMINARY)

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	VDD		-0.3 to +4.0	V
Input voltage	V	CE pin	-0.3 to Vdd +0.6	V
		Other than CE pin	-0.3 to $\mathrm{V}_{\mathrm{dd}}+0.3$	V
Output voltage	Vo		-0.3 to V $\mathrm{Vd}^{\text {+ }} 0.3$	V
High-level output current	IOH	1 pin	-3.0	mA
		Total of all pins	-20.0	mA
Low-level output current	loL	1 pin	3.0	mA
		Total of all pins	20.0	mA
Operating temperature	TA		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.

Recommended Operating Range

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Supply voltage	$V_{\text {DD } 1}$	When CPU, PLL, and AD operates$\mathrm{T}_{\mathrm{A}}=-20 \text { to }+70^{\circ} \mathrm{C}$		1.8	3.0	3.6	V
	VDD2	When CPU operates,	$\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$	1.7	3.0	3.6	V
		and PLL and AD stop	$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$	1.6	3.0	3.6	V
Supply voltage rise time	trise	$\mathrm{V}_{\mathrm{DD}}=0 \rightarrow 1.8 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$				500	ms

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 3.6 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply current	IdD1	When CPU and PLL are operating with sine wave input to VCOH pin $\begin{array}{r} \left(f i \mathbb{N}=250 \mathrm{MHz}, \mathrm{VIN}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p}\right) \\ \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}$		6.5	10	mA
	ldod	When CPU is operating and PLL is stopped (IF counter stops) with sine wave input to Xin pin $\left(\mathrm{fiN}_{\mathrm{I}}=75 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}\right)$ $V_{D D}=3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$		35	45	$\mu \mathrm{A}$
	Ido3	When CPU and PLL are stopped (when HALT instruction is used) with sine wave input to Xis pin $\left(f_{\mathrm{IN}}=75 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V} \mathrm{VD}\right)$ $V_{D D}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	18	$\mu \mathrm{A}$
Data retention voltage	Vddr	On detection of power failure	1.7			V
Data retention current	lodr	When crystal oscillator stops $V D D=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			3	$\mu \mathrm{A}$
High-level input voltage	V_{HH}	CE, INT, P0B0-P0B3, P0C0, P0C1, P0D2, P0D3	0.8 VDD			V
	V_{1+2}	P1A0-P1A3	0.5 VDD			V
Low-level input voltage	VIL1	CE, INT, P0B0-P0B3, P0C0, P0C1, P0D2, P0D3			0.2 VDD	V
	VIL2	P1A0-P1A3			0.05 VDD	V
High-level output current	Іон1	POAO-POA3, POBO-POB3, POCO, POC1, P0D2, P0D3, P1B0-P1B3, P1C0, BEEP V OH $=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	-0.5			mA
	Іон2	EO $\quad \mathrm{VOH}=\mathrm{VDD}^{-0.5} \mathrm{~V}$	-0.2			mA
	Іонз		-20			$\mu \mathrm{A}$
Low-level output current	loct	POAO-POA3, POBO-POB3, POCO, P0C1, P0D2, P0D3, P1C0, BEEP $\mathrm{VoL}=0.5 \mathrm{~V}$	0.5			mA
	lot2	EO Vol $=0.5 \mathrm{~V}$	0.2			mA
	loL3	P1B0-P1B3 \quad VoL $=0.5 \mathrm{~V}$	5			$\mu \mathrm{A}$
	lol4	LCD0-LCD14 Vol $=0.5 \mathrm{~V}$	20			$\mu \mathrm{A}$
High-level input current	ІІн1	When P1A0 through P1A3 are pulled down $V_{I H}=V_{D D}=1.8 \mathrm{~V}$	3		30	$\mu \mathrm{A}$
	l_{1+2}	When Xin pin is pulled down $V_{I H}=V_{D D}=1.8 \mathrm{~V}$	40			$\mu \mathrm{A}$
LCD drive voltage	VLCD1	When LCD0 through LCD14 outputs are open $\mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=0.01 \mu \mathrm{~F}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.8	3.1	3.3	V
Output off leakage current	IL	EO			± 1	$\mu \mathrm{A}$

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 3.6 V)
(2/2)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operating frequency	fin 1	VCOL pin, MF mode, with sine wave input $\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p}$	0.3		8	MHz
	fin2	VCOL pin, HF mode, with sine wave input $\mathrm{V}_{\mathrm{IN}}=0.3 \mathrm{Vp}-\mathrm{p}$	5		130	MHz
	fin3	VCOH pin, VHF mode, with sine wave input $\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p}$	40		230	MHz
	fina	FMIFC/AMIFC pin, AMIF count mode, with sine wave input $\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{Vp}-\mathrm{p}$	400		500	kHz
	fins	FMIFC/AMIFC pin, AMIF count mode, with sine wave input $\mathrm{VIN}_{\mathrm{IN}}=0.15 \mathrm{Vp-p}$	0.4		2	MHz
	fing	FMIFC/AMIFC pin, FMIF count mode, with sine wave input $\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{Vp}-\mathrm{p}$	10		11	MHz

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-20$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 3.6 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
A/D conversion resolution					4	bit
A/D conversion total error		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 1.5	LSB

6. PACKAGE

56 PIN PLASTIC QFP (10×10)

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	12.8 ± 0.4	0.504 ± 0.016
B	10.0 ± 0.2	0.394 ± 0.008
C	10.0 ± 0.2	0.394 ± 0.008
D	12.8 ± 0.4	0.504 ± 0.016
F	0.8	0.031
G	0.8	0.031
H	0.30 ± 0.10	0.012 ± 0.004
I	0.13	0.005
J	$0.65($ T.P. $)$	0.026 (T.P.)
K	1.4 ± 0.2	0.055 ± 0.008
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	$0.15_{-0.0}^{+0.10}$	$0.006_{-0.000}^{+0.004}$
N	0.10	0.004
P	1.7	0.067
Q	0.125 ± 0.075	0.005 ± 0.003
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	2.0 MAX.	0.079 MAX.
		S56GB-65-1A7-3

[MEMO]
[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office Hong Kong
Eindhoven, The Netherlands Tel:2886-9318
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

[MEMO]

Purchase of NEC $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

