ULTRA-WIDEBAND DIFFERENTIAL VIDEO AMPLIFIER ## **UPC1663G** #### **FEATURES** - BANDWIDTH AND TYPICAL GAIN - 120 MHz at AVOL = 300 170 MHz at AVOL = 100 700 MHz at AVOL = 10 - VERY SMALL PHASE DELAY - GAIN ADJUSTABLE FROM 10 TO 300 - NO FREQUENCY COMPENSATION REQUIRED #### **DESCRIPTION** The UPC1663G is a video amplifier with differential input and output stages. A high frequency process ($f_T = 6 \text{ GHz}$) improves AC performance compared with industry-standard video amplifiers. This device is excellent as a sense amplifier for high-density CCDs, as a video or pulse amplifier in high-resolution displays, and in communications equipment. ### **ELECTRICAL CHARACTERISTICS** (TA = 25°C, VCC = ± 6 V, Rs = 50 Ω , f = 10 MHz) | | S PARAMETERS AND CONDITI | | l l | UPC1663G
G08 | | | |---------|---|---|------------|------------------------|--------------------------------------|------------| | | | ONS | UNITS | MIN | TYP | MAX | | d | Power Supply Current | | mA | | 13 | 20 | | | Differential Voltage Gain: Gain ¹ Gain ² | | | 200
8 | 320
10 | 500
12 | | | Bandwidth (Gain is 3 dB down from the gain at 100 KHz) | Gain ¹
Gain ² | MHz
MHz | | 120
700 | | | | Rise Time, Vout = 1V _{p-p} : | Gain ¹
Gain ² | ns
ns | | 2.9
2.7 | | | ı | Propagation Delay, Vout = 1 Vp-p: | Gain ¹
Gain ² | ns
ns | | 2
1.2 | | | N | Input Impedance: | Gain ¹
Gain ² | kΩ
kΩ | 50 | 4.0
180 | | | ١ | Input Capacitance | | pF | | 2 | | |) | Input Offset Current | | μΑ | | 0.4 | 5.0 | | | Input Bias Current | | μΑ | | 20 | 40 | | ı | Input Noise Voltage, 10 k to 10 MHz | | μVr.m.s. | | 3 | | | | Input Voltage Range | | V | ±1.0 | | | | RR | Common Mode Rejection Ratio, Vcm = ±1 V, f ≤100 kHz
Vcm = ±1 V, f = 5 MHz | | dB
dB | 55
53 | 70
60 | | | RR | Supply Voltage Rejection Ratio, ΔV = ±0.5 V | | dB | 50 | 70 | | | | Output Offset Voltage, Vo(off) = OUT1 - OUT2 Gain ¹ | | V | | 0.3
0.1 | 1.5
1.0 | | CM) | Output Common Mode Voltage | | V | 2.4 | 2.9 | 3.4 | | -р | , | | Vp-p | 3.0 | 4.0 | | | | Output Sink Current | | mA | 2.5 | 3.6 | | | RR off) | $Vcm = \\ Supply Voltage Rejection Ratio, \Delta V = \pm 0 \\ Output Offset Voltage, Vo(off) = OUT1 - Gain^1 \\ Gain^2 \\ Output Common Mode Voltage \\ Max. Output Voltage Swing, single-ender$ | $\label{eq:Vcm} Vcm = \pm 1 \ V, \ f = 5 \ \text{MHz}$ Supply Voltage Rejection Ratio, $\Delta V = \pm 0.5 \ V$ Output Offset Voltage, $Vo_{(off)} = OUT1 - OUT2 $ $Gain^1 \\ Gain^2$ Output Common Mode Voltage $\label{eq:Max.Output Voltage Swing, single-ended}$ | | 53
50
2.4
3.0 | 60
70
0.3
0.1
2.9
4.0 | | #### Notes: - 1. Gain select pins GA and GB are connected together. - 2. All gain select pins are open. - 3. Insert adjustment resistor (0 to 10 k Ω) between GA and GB when variable gain is necessary. ### ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C) | SYMBOLS | PARAMETERS | UNITS | RATINGS | |---------|--------------------------------------|-------|-------------| | Vc-VE | Voltage between Vc and VE | V | -0.3 to 14 | | Рт | Total Power Dissipation ² | mW | 280 | | Vid | Differential Input Voltage | V | ±5 | | Vin | Input Voltage | V | ±6 | | lo | Output Current | mA | 35 | | Тор | Operating Temperature | °C | -45 to +75 | | Tstg | Storage Temperature | °C | -55 to +150 | #### Notes: - 1. Operation in excess of any one of these parameters may result in permanent damage. - 2. Mounted on 5 cm x 5 cm x 0.16 mm glass epoxy PCB (TA = Max Top). - 3. Mounted on 50 cm x 50 cm x 1.6 mm glass epoxy PCB with copper film (TA = Max Top). ## RECOMMENDED OPERATING CONDITIONS (TA = 25°C) | SYMBOLS | CHARACTERISTICS | UNITS | MIN | TYP | MAX | |-----------|-------------------------|-------|-----|-----|------| | Vc | Positive Supply Voltage | V | +2 | +6 | +6.5 | | Ve | Negative Supply Voltage | V | -2 | -6 | -6.5 | | IO source | Source Current | mA | | | 20 | | IO sink | Sink Current | mA | | | 2.5 | | | Frequency Range | MHz | DC | | 200 | #### Attention: Due to high frequency characteristics, the physical circuit layout is very critical. Supply voltage line bypass, double-sided printed-circuit board, and wide-area ground line layout are necessary for stable operation. Two signal resistors connected to both inputs and two load resistors connected to both outputs should be balanced for stable operation. ### TYPICAL PERFORMANCE CURVES (TA = 25°C) ## VIDEO LINE SINGLE ENDED OUTPUT VOLTAGE SWING vs. FREQUENCY #### **EQUIVALENT CIRCUIT** ## TYPICAL PERFORMANCE UNDER SINGLE SUPPLY +5 V OPERATION* | PARAMETER | CONDITIONS | TYPICAL | UNITS | |--|--|-------------|------------------| | Differential Gain
Gain 1
Gain 2 | 15 MHz | 35
11 | dB
dB | | Bandwidth
Gain 1
Gain 2 | Gain is 3 dB down from the gain at 100 KHz | 106
115 | MHz
MHz | | Rise Time
Gain 1 | Rs = 50 Ω , Vout = 80 mV _{p-p} | 2.2 | ns | | Propagation
Delay | | | | | Gain 1
Gain 2 | RS = 50Ω , Vout = 80 mVp-p
RS = 50Ω , Vout = 60 mVp-p | | ns
ns | | Phase Shift | 100 MHz | 1.0 | 110 | | Gain 1
Gain 2 | | -123
-93 | degree
degree | | Output Power | ZL = 50 Ω, 15 MHz | F 0 | .ID | | RA = 240 Ω
RA = 910 Ω | | 5.0
0 | dBm
dBm | | R _A = 80 Ω | | -11.5 | dBm | ^{*} See Application Circuit ## NORMALIZED VOLTAGE GAIN vs. SUPPLY VOLTAGE ## TYPICAL PERFORMANCE CURVES (TA = 25°C) ## SINGLE ENDED OUTPUT VOLTAGE SWING vs. TEMPERATURE #### SINK CURRENT vs. TEMPERATURE ## INPUT BIAS CURRENT vs. TEMPERATURE ## DIFFERENTIAL VOLTAGE GAIN vs. RESISTANCE BETWEEN GA AND GR #### SUPPLY CURRENT vs. TEMPERATURE #### SUPPLY CURRENT vs. SUPPLY VOLTAGE ### TYPICAL PERFORMANCE CURVES (TA = 25°C) ### **TYPICAL APPLICATIONS** #### • Photo Signal Detector Since the input impedance of the IC falls when the gain rises, stable operation can be achieved by inserting a FET buffer when necessary as illustrated above. #### • Application for +5 V Single Supply ## OUTLINE DIMENSIONS (Units in mm) #### UPC1663G PACKAGE OUTLINE G08 #### Notes: - Each lead centerline is located within 0.12 mm (0.005 inch) of its true position at maximum material condition. - 2. All dimensions are typical unless otherwise specified. #### **ORDERING INFORMATION** | PART NUMBER | QUANTITY | |-------------|-----------| | UPC1663G-E1 | 2500/Reel | ### **CONNECTION DIAGRAM (TOP VIEW)**