

Preliminary

Overview

LC573104A and LC573102A are CMOS 4-bit microcontrollers featuring low-voltage operation and low power dissipation.
Both LC573104A and LC573102A incorporate a 4-bit parallel processing ALU, 4 K bytes $/ 2 \mathrm{~K}$ bytes ROM, a 64×4-bit RAM, a 16 -bit timer, and an infrared remote control transmission carrier output circuit.

Applications

- Remote controller.
- Control of small measuring instruments.

Features

- ROM : 4096×8 bits (LC573104A) 2048×8 bits (LC573102A)
- RAM : 64×4 bits
- Cycle time

Cycle time	System clock generator	Oscillation frequency	Supply voltage
$17.6 \mu \mathrm{~s}$	Ceramic oscillation circuit	455 kHz	2.3 to 6.0 V

- Current Drain
a. At normal operation

Current drain	System clock generator	Oscillation frequency	Supply voltage
$150 \mu \mathrm{~A}$ typ	CR oscillation	455 kHz	3.0 V
$400 \mu \mathrm{~A}$ typ	CR oscillation	455 kHz	5.0 V

b. HALT mode

Current drain	System clock generator	Oscillation frequency	Supply voltage
$80 \mu \mathrm{~A}$ typ	CR oscillation	455 kHz	3.0 V
$300 \mu \mathrm{~A}$ typ	CR oscillation	455 kHz	5.0 V

c. HOLD mode

Leakage current	Condition	Oscillation frequency	Supply voltage
$0.1 \mu \mathrm{~A}$ typ	When CR oscillation is at STOP mode	455 kHz	5.0 V

Package Dimensions

unit:mm
3112A-MFP24S
[LC573104A, 573102A]

SANYO : MFP24S

Pin Assignment

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.
- Port
- Input port (S port, M port) : 2-port (8 pins) [Key scan input port]
- Input/Ouput port :
P0 port, P1 port 2-port (8 pins)

P2 port 1-port (2 pins) [Key scan expansion port]

- Infrared remote control carrier generation circuit.
- Software-controllable remote control carrier output ON/OFF.
- Software-controllable carrier frequency and duty ratio.
< $38 \mathrm{kHz}-1 / 3$ duty, $38 \mathrm{kHz}-1 / 2$ duty, $57 \mathrm{kHz}-1 / 2$ duty>
(When fixed carrier signal is output, it is specified by mask option)
$\cdot 1 \mathrm{kHz}$ to 200 kHz infrared remote control transmission carrier frequency.
(When carrier output is selected by timer at mask option, and when 455 kHz CR oscillator is used)
- Infrared carrier output-dedicated terminal built-in (CA terminal).
$\cdot 108 \mathrm{~ms}$ HALT-mode cancel signal output.
- Timer
- 16-bit software-controllable Timer

Timer input clock : Ceramic (CR) oscillation frequency (455 kHz).
$\cdot 108 \mathrm{~ms}$ HALT release request signal generation timer (Free running timer).

- Watchdog timer (changed over between USED/UNUSED by mask option)
- Sub-routine stack level
. 2 levels
- Oscillation circuit
- Ceramic (CR) oscillation circuit : 455 kHz (for System clock generation), Feedback resistor built-in.
- Standby function
- HALT mode

HALT mode used to reduce current drain.
HALT mode suspends program execution.
Following shows how to release the HALT mode.
(A) System reset
(B) HALT mode release request signal.

- HOLD mode

HOLD mode stops ceramic resonator (CR). The HOLD mold can be released in two ways.
(A) System reset
(B) Apply H level input to S port pin or M port pin. (However, it is necessary to set S port or M port HOLD mode release permission flag beforehand.)

- From of shipment
- MFP-24S (1.0mm pitch) and chip.

NOTE : When dipping in solder to mount the MFP package on board, contact SANYO for instructions.

The Application Development System for the LC573100 Series.

(1) Manual
(A) Users Manual : LC573100 Series Users Manual.
(B) Development Tool Manual : LC573100 Series Development Tool Manual.
(2) Development Tools

- Tools for application development of the LC573100 Series.
(A) Personal computer (MS-DOS based).
(B) Cross assembler (LC573100.EXE).
(C) Mask option generator (SU573100.EXE).
- Tools to evaluate application development of the LC573100 Series.
(A) EVA chip (LC5797).

NOTE 1) As RAM capacity differs between EVA chip (LC5797) and the LC573100 Series, always check before programming and debugging.
LC573100 : 64×4 bits
LC5797: 256×4 bits
NOTE 2) Always keep the DPH value in mind when programming. Only DPH ' 0 ' to ' 3 ' may be used as the RAM address.
If DPH other than ' 0 ' to ' 3 ' is used as RAM address when programming, SANYO will not be liable for any trouble caused.
(B) EVA chip board (TB5730).

NOTE) The application evaluation board is the evaluation board made by the user.
(C) Evaluation board [EVA420 (Monitor ROM : ER-573000)]
(D) Display and mask option data control board [DCB-1A (REV3.6)]

Development Support System Outline

(A) Block Diagram
(LC573104A)

Die Specifications

Chip size: $\quad 3.51 \mathrm{~mm} \times 3.19 \mathrm{~mm}$
Chip thickness : $\quad 480 \mu \mathrm{~m}$
Pad size : $\quad 120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$

Pad Layout

Pad coordinates

MFP24S pin assignment				
	Pad No.	Pin Name	X $(\mu \mathrm{m})$	Y $(\mu \mathrm{m})$
17	1	VDD	1465	1365
18	2	CA	1155	1365
19	3	P20	-305	1365
20	4	P21	-1485	1365
21	5	P00	-1485	1110
22	6	P01	-1485	870
23	7	P02	-1485	565
24	8	P03	-1485	325
1	9	P10	-1485	20
2	10	P11	-1485	-220
3	11	P12	-1485	-480
4	12	P13	-1485	-1395
5	13	S1	-410	-1395

MFP24S pin assignment				
	Pad No.	Pin Name	X $(\mu \mathrm{m})$	Y $(\mu \mathrm{m})$
6	14	S2	360	-1395
7	15	S3	560	-1395
8	16	S4	760	-1395
-	17	TEST	960	-1395
-	18	TEST	1140	-1395
9	19	M1	1560	-1395
10	20	M2	1560	-905
11	21	M3	1560	-685
12	22	M4	1560	-445
13	23	$\overline{R E S}$	1465	330
14	24	VSS	1465	570
15	25	CF1	1465	755
16	26	CF2	1465	1155

- The chip center is the origin of the above pad coordinates.

The X, Y values represent the coordinate of the pad center.

- When dipping the MFP24S package in solder to mount on boards, contact SANYO for instructions, etc.
- Chip substrate should be connected to V_{SS} or left open.

Pin Function

MFP24S Pin No.	Pin name	Input/ Output	Function description	Option	Reset status
17	$V_{\text {DD }}$	-	Supply voltage. See Fig 1.		
14	$V_{S S}$	-	Ground. See Fig 1.		
15	CF1	Onput	User for system clock oscillation. - 455 kHz ceramic resonator is connected between CF1 and CF2 for oscillation. - Stops oscillation when receiving CR oscillation stop command.		
5 6 7 8	$\begin{aligned} & \text { S1 } \\ & \text { S2 } \\ & \text { S3 } \\ & \text { S4 } \end{aligned}$	Input	Input port S. - LSI system is reset by charging VDD to S1 to S4 simultaneously (Mask option). - Data is loaded in accumulator.	(1) 'L' level HOLD Tr YES/NO (2) Reset by S 1 to S 4 .	- Pull-down resistor ON. - Reset signal ENABLE.
$\begin{array}{\|l\|} \hline 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { M2 } \\ & \text { M3 } \\ & \text { M } \end{aligned}$	Input	Input port M. Data loaded in accumulator.	'L' level HOLD Tr YES/NO	- Pull-down resistor ON.
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{P} 00 \\ & \mathrm{P} 01 \\ & \mathrm{P} 02 \\ & \mathrm{P} 03 \end{aligned}$	Input/ Output	Input/output port. - Data loaded in accumulator. - Output pin to output data from accumulator. (P-ch Open Drain Output)		
2 3 4	$\begin{aligned} & \text { P10 } \\ & \text { P11 } \\ & \text { P12 } \\ & \text { P13 } \end{aligned}$	Input/ Output	Input/output port. - Data loaded in accumulator. - Output pin to output data from accumulator. (P-ch Open Drain Output)		
	$\begin{aligned} & \mathrm{P} 20 \\ & \mathrm{P} 21 \end{aligned}$	Input/ Output	Input/output port. - Data loaded in accumulator. - Output pin to output data from accumulator. (P-ch Open Drain Output) - LED direct drivable pin.		
18	CA	Output	Remote control carrier output.	Fixed carrier output/ Carrier output by timer	- At reset 'L' level. - At fixed carrier output $38 \mathrm{kHz}-1 / 3$ duty.
13	$\overline{\text { RES }}$	Input	Reset input. Internal pull-up resistor.		

Supply connections

Fig. 1 Supply connections

Mask Option

(1) Input port option

Option	Circuit	Remarks
'L' level Hold Tr selection		Next port switches over in sequence. - S1 to S4, M1 to M4 Input signal level Hold Tr selection - 'L' level Hold Tr used. - 'L' level Hold Tr not used.

(2) Reset signal option by S port

Option	Circuit	Remarks
Resetting IC by S port		Selects signal for resetting IC system by simultaneously charging 'H' level to S1 to S4. - Allow - Prohibit

(3) Carrier standard clock generation circuit option for remote control

(4) Watchdog timer circuit option

Option	Circuit	Remarks
Watchdog timer selection		Watchdog timer used/unused selection

Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$V_{\text {DD }}$		-0.3 to +7.0	V
	$\mathrm{V}_{\text {DD1 }}$		-0.3 to V_{DD}	V
	$\mathrm{V}_{\text {DD2 }}$		-0.3 to V_{DD}	V
Input voltage	V_{IN}	S1 to S4, M1 to M4, RES, P00 to P03, P10 to P13, P20, P21, CF1 (P00 to P03, P10 to P13, P20, P21 are input mode)	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output voltage	V OUT	CA, P00 to P03, P10 to P13, P20, P21, CF2 (P00 to P03, P10 to P13, P20, P21 are output mode)	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current (Per 1 pin)	IOUT1	CA (per 1 pin)	25	mA
	IOUT2	P00 to P03, P10 to P13 (per 1 pin)	500	$\mu \mathrm{A}$
	IOUT3	P20, P21 (Per 1 pin)	10	mA
	IOUT4	Output pins other than listed above (per 1 pin)	500	$\mu \mathrm{A}$
Total output current of all pins except CA	IALL	All pins totaled (except for CA pin)	25	mA
Operating temperature	Topr		-30 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Ranges at $\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$\mathrm{V}_{\text {DD }}$		2.3		6.0	V
Input high-level voltage	$\mathrm{V}_{\mathrm{IH} 1}$	S1 to S4, M1 to M4, P00 to P03, P10 to P13, P20, P21 (P0, P1, P2 ports are input mode)	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
Input low-level voltage	$\mathrm{V}_{\text {IL1 }}$		0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Input high-level voltage	$\mathrm{V}_{\text {IH2 }}$	$\overline{R E S}$	$0^{0.75 V_{\text {D }}}$		V_{DD}	V
Input low-level voltage	$\mathrm{V}_{\text {IL2 }}$		0		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V
Operation frequency	${ }^{\text {foPG }}$	At CR oscillation, Fig. 2	380	455	500	kHz

Fig. 2 CR Oscillation Circuit

Electrical Characteristics at $\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions		Ratings			Unit	
				min	typ	max		
Input impedance	$\mathrm{R}_{\text {IN }}{ }^{1 /}$	$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$, S1 to S 4 , M1 to M4, 'L' level Hold Tr, Fig. 3		150	300	1000	k Ω	
	$\mathrm{R}_{\text {IN }}{ }^{1 B}$	$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$, S1 to S4, M1 to M4, 'L' level pull-down Tr, Fig. 3		30	50	100	k Ω	
	$\mathrm{R}_{\mathrm{IN}}{ }^{2}$	$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \overline{\mathrm{RES}}$		10		300	k Ω	
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-450 \mu \mathrm{~A}, \mathrm{P} 00$ to P03, P10 to P13		$\mathrm{V}_{\mathrm{DD}}{ }^{-0.45}$			V	
Output off-leak current	\| I OFF ${ }^{\text {\| }}$	$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \mathrm{P} 00$ to $\mathrm{P} 03, \mathrm{P} 10$ to P 13	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$			1.0	$\mu \mathrm{A}$	
	$\|\mathrm{IOFF}\|$		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	-1.0			$\mu \mathrm{A}$	
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}, \mathrm{P} 20, \mathrm{P} 21$		$\mathrm{V}_{\mathrm{DD}}{ }^{-0.5}$			V	
Output off-leak current	\| IOFF		$\mathrm{V}_{\mathrm{DD}}=2.9 \mathrm{~V}, \mathrm{P} 20, \mathrm{P} 21$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$			1.0	$\mu \mathrm{A}$
	\| IOFF ${ }^{\text {\| }}$		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	-1.0			$\mu \mathrm{A}$	
Output current (H)	${ }^{1} \mathrm{OH}^{1}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}, \mathrm{CA}$		6	12		mA	
Output current (L)	${ }^{\text {I OL }}{ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.9 \mathrm{~V}, \mathrm{CA}$		2	5		mA	
HALT-mode supply current	'DD1	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, 455 \mathrm{kHz}$ CR oscillation, $\mathrm{Ccd}=\mathrm{Ccg}=150 \mathrm{pF}$, $\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$, Fig. 5			80	300	$\mu \mathrm{A}$	
Operating current	${ }^{\prime} \mathrm{DD}^{2}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, 455=\mathrm{kHz}$ CR oscillation, $\mathrm{Ccd}=\mathrm{Ccg}=150 \mathrm{pF}$, $\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$, Fig. 5			150	500	$\mu \mathrm{A}$	
Supply leak current 1	l LEAK^{1}	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.2	1	$\mu \mathrm{A}$	
Supply leak current 2	l LEAK 2		$\mathrm{Ta}=50^{\circ} \mathrm{C}$		1	5	$\mu \mathrm{A}$	
Oscillator start-up voltage	$\mathrm{V}_{\text {ST }}$	Ccd=Ccg=150pF, 455kHz CR oscillation, Fig. 4				2.3	V	
Oscillator sustaining voltage	$\mathrm{V}_{\text {SUS }}$			2.0			V	
Oscillator start-up time	tst	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{Ccd}=\mathrm{Ccg}=150 \mathrm{pF}, 455 \mathrm{kHz}$ CR oscillation, Fig. 4				30	ms	

Recommended Oscillators.

Oscillator	Manufacturer	Part number	Ccg	Ccd
455 kHz osceillator	Kyocera	KBR-455BK/Y	150 pF	150 pF
	Murata	CSB455E	150 pF	150 pF
	Fuji Ceramics	POE-455	150 pF	150 pF

Electrical Characteristics at $\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions		Ratings			Unit
				min	typ	max	
Input impedance	$\mathrm{R}_{\mathrm{IN}} 1 \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$, S 1 to S 4 , M 1 to M 4 , 'L' level Hold Tr, Fig. 3		70	200	600	k Ω
	$\mathrm{R}_{\text {IN }}{ }^{1 B}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, S1 to S 4 , M1 to M4, 'L' level pull-down Tr, Fig. 3		30	50	100	k Ω
	$\mathrm{R}_{\text {IN }}{ }^{2}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \overline{\mathrm{RES}}$		10		300	$\mathrm{k} \Omega$
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-750 \mu \mathrm{~A}, \mathrm{P} 00$ to P03, P10 to P13		$\mathrm{V}_{\mathrm{DD}}-0.75$			V
Output off-leak current	$\|\mathrm{IOFF}\|$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{P} 00$ to $\mathrm{P} 03, \mathrm{P} 10$ to P 13	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$			1.0	$\mu \mathrm{A}$
	$\mid \mathrm{I}$ OFF ${ }^{\text {\| }}$		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	-1.0			$\mu \mathrm{A}$
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}, \mathrm{P} 20, \mathrm{P} 21$		$\mathrm{V}_{\mathrm{DD}}{ }^{-0.5}$			V
Output off-leak current	IIOFF	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{P} 20, \mathrm{P} 21$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$			1.0	$\mu \mathrm{A}$
	\| IOFF		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	-1.0			$\mu \mathrm{A}$
Output current (H)	${ }^{1} \mathrm{OH}^{1}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}, \mathrm{CA}$		10	20		mA
Output current (L)	${ }^{\text {I OL }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.9 \mathrm{~V}, \mathrm{CA}$		2	5		mA
HALT-mode supply current	IDD1	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, 455 \mathrm{kHz}$ CR oscillation, $\mathrm{Ccd}=\mathrm{Ccg}=150 \mathrm{pF}$, $\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$, Fig. 5			300	400	$\mu \mathrm{A}$
Operating current	${ }^{\text {I DD }}$ 2	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, 455 \mathrm{kHz}$ CR oscillation, $\mathrm{Ccd}=\mathrm{Ccg}=150 \mathrm{pF}$, $\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$, Fig. 5			400	500	$\mu \mathrm{A}$
Supply leak current 1	'LEAK ${ }^{1}$	$V_{D D}=5.0 \mathrm{~V}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.2	1	$\mu \mathrm{A}$
Supply leak current 2	'LEAK ${ }^{2}$		$\mathrm{Ta}=50^{\circ} \mathrm{C}$		1	5	$\mu \mathrm{A}$
Oscillator start-up voltage	$\mathrm{V}_{\text {ST }}$	Ccd=Ccg=150pF, 455 kHz CR oscillation, Fig. 4				2.3	V
Oscillator sustaining voltage	$\mathrm{V}_{\text {SUS }}$			2.0			V
Oscillator start-up time	${ }^{\text {t }}$ T T	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{Ccd}=\mathrm{Ccg}=150 \mathrm{pF}, 455 \mathrm{kHz}$ CR oscillation, Fig. 4				30	ms

Fig. 3 : S1 to S4, M1 to M4 input structure

Fig. 5 : Supply current measuring circuit

Fig. 4 : Oscillator start-up voltage, Oscillator sustaining voltage, and Oscillator start-up time measuring circuit.

[^0]
LC573100 Series Instruction Set

The instruction set uses the following abbreviations and symbols.

AC : Accumulator
ACn : Accumulator bit n
CF : Carry flag
DP : Data pointer
DPL : Data pointer low nibble
DPH : Data pointer high nibble
EDP : Data pointer save register
EDPL : Data pointer save register low nibble
EDPH : Data pointer save register high nibble
SP : Strobe pointer
TREG : Temporary register
SCFn : Start conditioning flag n
CTLn : Control register n
HEFn : Hold enable flag n
ROM : ROM data
CFCF : Ceramic resonator oscillator control flag
() : Contents
[] : Contents
$\checkmark \quad$: Logical OR
$\forall \quad$: Logical exclusive-OR
$\wedge \quad:$ Logical AND
$\leftarrow \quad:$ Transfer direction, result

M	: Memory
M (DP)	: Memory addressed by DP
[M(DP)]	: Contents of memory addressed by DP
PC	: Program counter
PCn	: Program counter bit n
PAGE	: Page latch
STSn	: Status register n
(STSm)	: Status register n content
[P()]	: Contents of port ()
X	: Immediate data
Xn	: Immediate data bit n
PDF	: Input port pull-down flag
SFR	: Special function register
(SFR)	: Contents of special function register
CSTF	: Chrono start flag
SPC	: Strobe pointer control bit
CCF	: Carrier output control flag
()	: Complement of contents
[]	: Complement of contents
$\phi \mathrm{n}$: Output from stage n of 15 -stage divider
WDT	: Watchdog timer

- The special function registers are abbreviated as follows.

TCON : Timer control register
TLOW : Timer/counter register low byte
THIGH : Timer/counter register high byte
CTL4 : Control register 4
P0 : Port P0
P1 : Port P1
P2 : Port P2

LC573100 Series Instructions

	Mnemonic	Instruction code	Function	愻	$\stackrel{\varrho}{0}$	Function description	Status flag affected
	TAAT	$0000 \quad 0001$	AC, TRGE \leftarrow ROM	1	2	Contents of ROM on current page, addressed by PC whose low-orderd 8 bits are replaced with contents of $A C$ and M (DP), are loaded to $A C$ and TREG	
	MTR	00010010	$\mathrm{M}(\mathrm{DP}) \leftarrow$ TREG	1	1	Stores the conternts of TREG memory location pointed to by DP.	
	ASR0	$0001 \quad 1000$	$\mathrm{AC}_{\mathrm{n}} \leftarrow \mathrm{AC}_{\mathrm{n}+1}, \mathrm{AC}_{3} \leftarrow 0$	1	1	Shifts the contents of the AC right and enter 0 into the MSB.	
	ASR1	$0001 \quad 1001$	$\mathrm{AC}_{n} \leftarrow \mathrm{AC} \mathrm{n}_{+1}, \mathrm{AC}_{3} \leftarrow 1$	1	1	Shifts the contents of the AC right and enter 1 into the MSB.	
	ASLO	$0001 \quad 1010$	$A C_{n} \leftarrow A C_{n-1}, A C_{0} \leftarrow 0$	1	1	Shifts the contents of the AC left and enter 0 into the LSB.	
	ASL1	$0001 \quad 1011$	$\mathrm{AC}_{\mathrm{n}} \leftarrow \mathrm{AC}_{\mathrm{n}-1}, \mathrm{AC}_{0} \leftarrow 1$	1	1	Shifts the contents of the AC left and enter 1 into the LSB.	
	INC	$1001 \quad 1000$	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow \mathrm{M}(\mathrm{DP})+1$	1	1	Memory M (DP) contents incremented +1, and loaded to AC and M (DP).	
	DEC	$1001 \quad 1001$	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow \mathrm{M}(\mathrm{DP})-1$	1	1	Memory M (DP) contents decremented -1, and loaded to AC and M (DP).	
	ADC	10000000	$\mathrm{AC} \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{DP})]+\mathrm{CF}$	1	1	AC, memory M (DP) and CF contents are binary-added and the result loaded to $A C$.	CF
	ADC*	10001000	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{DP})]+\mathrm{CF}$	1	1	AC, memory M (DP) and CF contents are binary-added and the result loaded to $A C, M(D P)$.	CF
	ADCI X	$\begin{array}{cc} 1001 & 0000 \\ ---- & x_{3} x_{2} x_{1} x_{0} \end{array}$	$A C \leftarrow(A C)+X+C F$	2	2	AC, immediate data and CF contents are binary-added, and the result loaded to $A C$.	CF
	SBC	10000001	$\mathrm{AC} \leftarrow(\mathrm{AC})+[\overline{\mathrm{M}}(\mathrm{DP})]+\mathrm{CF}$	1	1	AC, memory M (DP) and CF contents are binary-subtracted, and the result loaded to AC.	CF
	SBC*	$1000 \quad 1001$	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})+[\overline{\mathrm{M}}(\mathrm{DP})]+\mathrm{CF}$	1	1	AC, memory M (DP) and CF contents are binary-subtracted, and the result loaded to $A C$ and M (DP).	CF
	SBCI X	$\begin{array}{cc} 1001 & 0001 \\ ---- & x_{3} x_{2} x_{1} x_{0} \\ \hline \end{array}$	$A C \leftarrow(A C)+\bar{X}+C F$	2	2	AC, immediate data and CF contents are binary-subtracted and the result loaded to AC.	CF
	ADD	10000010	$\mathrm{AC} \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) contents are binary-added and the result loaded to AC.	CF
	ADD*	$1000 \quad 1010$	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) contents are binary-added and the result loaded to $A C$ and M (DP).	CF
	ADDI X	$\begin{array}{cc} 1001 & 0010 \\ ---- & x_{3} x_{2} x_{1} x_{0} \end{array}$	$A C \leftarrow(A C)+X$	2	2	AC and immediate data contents are binary-added and the result loaded to AC.	CF
	SUB	10000011	$\mathrm{AC} \leftarrow(\mathrm{AC})+[\overline{\mathrm{M}(\mathrm{DP})}]+1$	1	1	AC and memory M (DP) contents are binary-subtracted and the result loaded to $A C$.	CF
	SUB*	$1000 \quad 1011$	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})+[\overline{\mathrm{M} \mathrm{(} \mathrm{DP)}]}+1$	1	1	AC and memory M (DP) contents are binary-subtracted and the result loaded to $A C$ and M (DP).	CF
	SUBI X	1001 0011 ---- $x_{3} x_{2} x_{1} x_{0}$	$\mathrm{AC} \leftarrow(\mathrm{AC})+\overline{\mathrm{X}}+1$	2	2	AC and immediate data contents are binary-subtracted and the result loaded in AC.	CF
	ADN	10000100	$\mathrm{AC} \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) contents are binary-added and the result loaded to AC.	
	ADN*	10001100	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})+[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) contents are binary-added and the result loaded to $A C$ and M (DP).	
	ADNI X	$\begin{array}{cc} \hline 1001 & 0100 \\ ---- & x_{3} x_{2} x_{1} x_{0} \\ \hline \end{array}$	$A C \leftarrow(A C)+X$	2	2	AC and immediate data contents are binary-added and the result loaded in AC.	
이	AND	10000101	$\mathrm{AC} \leftarrow(\mathrm{AC}) \wedge[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) contents are ANDed and the result loaded to AC.	
	AND*	10001101	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC}) \wedge[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) contents are ANDed and the result loaded to AC and M (DP).	
	ANDI X	1001 0101 ---- $x_{3} x_{2} x_{1} x_{0}$	$\mathrm{AC} \leftarrow(\mathrm{AC}) \wedge \mathrm{X}$	2	2	AC and immediate data contents are ANDed and the result loaded to AC.	
	EOR	10000110	$\mathrm{AC} \leftarrow(\mathrm{AC}) *[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) are exclusive ORed and the result loaded to AC.	
	EOR*	10001110	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC}) \forall[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) are exclusive ORed, and the result loaded to AC and M (DP).	
	EORIX	$\begin{array}{cc} 1001 & 0110 \\ ---- & x_{3} x_{2} x_{1} x_{0} \end{array}$	$A C \leftarrow(A C) \forall X$	2	2	AC and immediate data are exclusive ORed and the result loaded to AC.	
	OR	10000111	$\mathrm{AC} \leftarrow(\mathrm{AC}) \vee[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) are ORed and the result loaded to AC.	
	OR*	$1000 \quad 1111$	$\mathrm{AC}, \mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC}) \vee[\mathrm{M}(\mathrm{DP})]$	1	1	AC and memory M (DP) are ORed and the result loaded to AC and M (DP).	
	ORI X	1001 0111 ---- $x_{3} x_{2} x_{1} x_{0}$	$\mathrm{AC} \leftarrow(\mathrm{AC}) \vee \mathrm{X}$	2	2	AC and immediate data are ORed and the result loaded to AC.	

Continued on next page

LC573104A, 573102A

Continued from preceding page.

	Mnemonic	Instruction code		Function	¢	¢	Function description	Status flag affected
	SDPL	0001	1100	$\mathrm{DPL} \leftarrow(\mathrm{AC})$	1	1	AC contents loaded to DPL.	
	SDPH	0001	1101	$\mathrm{DPH} \leftarrow(\mathrm{AC})$	1	1	AC contents loaded to DPH.	
	LDPL	1111	1101	$\mathrm{AC} \leftarrow(\mathrm{DPL})$	1	1	DPL contents loaded to AC.	
	LDPH	1111	1110	$\mathrm{AC} \leftarrow(\mathrm{DPH})$	1	1	DPH contents loaded to AC.	
	MDPL X	1011	$x_{3} x_{2} x_{1} x_{0}$	DPL $\leftarrow \mathrm{X}$	1	1	Immediate data X loaded to DPL.	
	MDPH X	1100	$\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$	DPH $\leftarrow \mathrm{X}$	1	1	Immediate data X loaded to DPH.	
	EDPL	0001	1110	(DPL) $\leftrightarrow($ EDPL)	1	1	DPL and EDPL contents exchanged.	
	EDPH	0001	1111	(DPH) $\leftrightarrow($ EDPH $)$	1	1	DPH and EDPH contents exchanged.	
	IDPL	1001	1010	$\mathrm{DPL} \leftarrow(\mathrm{DPL})+1$	1	1	DPL contents incremented +1.	
	IDPH	1001	1100	DPH $\leftarrow(\mathrm{DPH})+1$	1	1	DPH contents incremented +1 .	
	DDPL	1001	1011	DPL $\leftarrow(\mathrm{DPL})-1$	1	1	DPL contents decremented - 1 .	
	DDPH	1001	1101	DPH $\leftarrow(\mathrm{DPH})-1$	1	1	DPH contents decremented -1.	
क	SSP	1010	1110	$\mathrm{SP} \leftarrow(\mathrm{AC})$	1	1	AC contents loaded to SP.	
	LSP	1010	1010	$\mathrm{AC} \leftarrow(\mathrm{SP})$	1	1	SP contents loaded to AC.	
	MSP X	1110	$x_{3} x_{2} x_{1} x_{0}$	$\mathrm{SP} \leftarrow \mathrm{X}$	1	1	Immediate data X loaded to SP .	
	ISP	1001	1110	$\mathrm{SP} \leftarrow(\mathrm{SP})+1$	1	1	SP contents incremented +1 .	
	DSP	1001	1111	$\mathrm{SP} \leftarrow(\mathrm{SP})-1$	1	1	SP contents decremented -1.	
$\begin{aligned} & \text { 希 } \\ & \hline \end{aligned}$	LHLT	1010	1011	AC \leftarrow (STS2), STS2 $\leftarrow 0$	1	1	STS2 contents loaded to AC and STS2 is reset.	$\begin{aligned} & \text { SCF1 to } \\ & \text { SCF4 } \end{aligned}$
	L500	1010	1100	AC $\leftarrow($ STS1), SCF0 $\leftarrow 0$	1	1	STS1 contents loaded to AC and SCFO is reset.	SCFO
	CSP	0000	0100	CSTF $\leftarrow 0$	1	1	CSTF reset.	CSTF
	CST	0000	0101	CSTF $\leftarrow 1$	1	1	CSTF set.	CSTF
	RC5	0000	0110	HEFO $\leftarrow 0$	1	1	HEFO reset to inhibit Halt mode release by overflow from the divider circuit.	HEFO
	SC5	0000	0111	HEFO $\leftarrow 1$	1	1	HEFO set enabling overflow from the divider circuit to release the Halt mode.	HEFO
	RCF	1111	0000	$\mathrm{CF} \leftarrow 0$	1	1	CF reset.	CF
	SCF	1111	0001	$\mathrm{CF} \leftarrow 1$	1	1	CF set.	CF
	LDA	1010	1001	$\mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{DP})]$	1	1	Memory M (DP) contents transferred to AC.	
	STA	1010	1101	$\mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})$	1	1	AC contents stored in memory M (DP).	
	LDI X	0011	$\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$	$A C \leftarrow X$	1	1	Immediate data X loaded to AC.	
	MVI X	0010	$\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$	M (DP) \leftarrow X	1	1	Immediate data X loaded to memory M (DP).	

Continued on next page.

Continued from preceding page.

	Mnemonic	Instruction code		Function	¢	¢ $\frac{0}{0}$ U		Function description	Status flag affected
$\begin{aligned} & \text { O} \\ & \text { oㄴ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	HALT	0000	0000	CPU operation halts	1	1	- Halts CPU operation. HALT mode is released under the following conditions. - HALT mode is cancelled by the interaction of SIC X and SC5 commands.		
	SCI X	110	$\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$	CTL2 $\leftarrow \mathrm{X}$	1	1	X_{0} to X_{3} Operation.		HEF1 to HEF4
							X_{0}	HFE1 is set to enable release of HALT mode by overflow signal from divider circuit following CF oscillation circuit.	
							X_{1}	HFE2 is set enabling signal rise at input port S to release HALT mode.	
							X_{2}	HFE3 is set enabling signal rise at input port M to release HALT mode.	
							X_{3}	HFE4 is set enabling 1/10 second pulse to release HALT.	
	NOP	1111	1111	No operation	1	1	No operation.		
	IPS	1010	1111	$\mathrm{AC} \leftarrow[\mathrm{P}(\mathrm{S})]$	1	1	Input data at input port S loaded to AC.		
	IPM	1010	1000	$\mathrm{AC} \leftarrow[\mathrm{P}(\mathrm{M})]$	1	1	Input data at input port M loaded to AC.		
	SPDR X	111	$01 \mathrm{X}_{1} \mathrm{X}_{0}$	PDF $\leftarrow \mathrm{X}$	1	1	Pull-down resister MOS-Tr at corresponding input port turned ON/OFF.		PDF
							Bit content	Operation	
							$\mathrm{X}_{0}=0$	S-Terminal Pull down Tr OFF.	
							$\mathrm{X}_{0}=1$	S-Terminal Pull down Tr ON.	
							$\mathrm{X}_{1}=0$	M-Terminal Pull down Tr OFF.	
							$\mathrm{X}_{1}=1$	M-Terminal Pull down Tr ON.	
	OUT	111	1100	(1) Cannot be used when SPC $=0 \& S P=0 \mathrm{H}$ to $\mathrm{CH}, \mathrm{EH}, \mathrm{FH}$.	1	1	Cannnot be CH, EH, F	e used. (Causes error when OUT is executed at $\mathrm{SPC}=0 \& \mathrm{SP}=0 \mathrm{H}$ to H.)	
				$\begin{aligned} & \text { (2) } \text { When } \mathrm{SP}=0 \& \mathrm{SP}=\mathrm{D} \\ & \text { CTL3 } \leftarrow(\mathrm{AC}) \end{aligned}$			AC content	ts transferred to CTL3.	$\begin{aligned} & \text { CFCF } \\ & \text { CCF } \end{aligned}$
				(3) When SPC=1 SFR $\leftarrow(\mathrm{AC})$			AC content	ts transferred to special function register SFR.	
	TWRT	0000	0010	(1) Cannot be used when SPC $=0 \& S P=0 \mathrm{H}$ to $\mathrm{CH}, \mathrm{EH}, \mathrm{FH}$.	1	1	Cannnot be CH, EH, F	used. (Causes error when TWRT is executed at $\mathrm{SPC}=0 \& \mathrm{SP}=0 \mathrm{H}$ to H.)	
				(2) When $\mathrm{SPC}=0 \& \mathrm{SP}=\mathrm{D}$ CTL3 \leftarrow ROM			High-order order 8 bits	4 bits data of ROM, on current page, addressed by PC whose lows are replaced by AC and $\mathrm{M}(\mathrm{DP})$ contents, is transferred to CTL3.	$\begin{aligned} & \text { CFCF } \\ & \text { CCF } \end{aligned}$
				(3) When SPC=1 SFR \leftarrow ROM			High-order whose low to special	4 bits or 8 bits data of ROM, on the current page, addressed by PC -order 8 bits are replaced by $A C$ and M (DP) contents is transferred unction register SFR	
	IN	000	0111	(1) Cannot be used at SPC $=0 \& \mathrm{SP}=0 \mathrm{H}$ to $\mathrm{CH}, \mathrm{EH}, \mathrm{FH}$.	1	1	Cannnot be CH, EH, F	e used. (Causes error when IN is executed at $\mathrm{SPC}=0 \& \mathrm{SP}=0 \mathrm{H}$ to H.)	
				(2) When $\mathrm{SPC}=0 \& \mathrm{SP}=\mathrm{D}$ $A C \leftarrow(S T S 3)$			STS3 cont	ents transferred to AC.	
				(3) When SPC=1 AC $\leftarrow($ SFR)			Special fun	ction register SFR contents transferred to AC.	

Continued on next page.

LC573104A, 573102A

Continued from preceding page.

	Mnemonic	Instruction code		Function		軨	Function description	Status flag affected
	JMP X	$\begin{array}{rr} 0000 \\ x_{7} x_{6} x_{5} x_{4} & 1 \\ x_{1} \end{array}$	$\begin{aligned} & 1 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\left(\mathrm{PC}_{10}\right.$ to $\left.\mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10}$ to X_{0}	2	2	Loads data specified by X_{10} to X_{0} to PC and jumps unconditionally.	
	BAB0 X	$\begin{array}{cc} 0100 \\ x_{7} x_{6} x_{5} x_{4} & 1 \\ \hline \end{array}$	$\begin{aligned} & 1 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{AC}_{0}=1 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \end{aligned}$	2	2	When AC bit 0 is ' 1 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. At ' 0 ', PC is incremented +2 .	
	BAB1 X	$\begin{array}{cc} 0101 & 1 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \\ \hline \end{array}$	$\begin{aligned} & 1 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{AC}_{1}=1 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \\ & \hline \end{aligned}$	2	2	When AC bit 1 is ' 1 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. At ' 0 ', PC is incremented +2 .	
	BAB2 X	$\begin{array}{cc} 0110 & 1 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \\ \hline \end{array}$	$\begin{aligned} & 1 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{AC}_{2}=1 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \end{aligned}$	2	2	When AC bit 2 is ' 1 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. At ' 0 ', PC is incremented +2 .	
	BAB3 X	$\begin{array}{cc} 0111 \\ x_{7} x_{6} x_{5} x_{4} & 1 \\ \hline \end{array}$	$\begin{aligned} & 1 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{AC}_{3}=1 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \end{aligned}$	2	2	When AC bit 3 is ' 1 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. At ' 0 ', PC is incremented +2 .	
	BAZ X	$\begin{array}{cc} 0100 & 0 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \end{array}$	$\begin{aligned} & 0 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{AC}=0 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{x}_{10} \text { to } \mathrm{x}_{0} \end{aligned}$	2	2	When AC is ' 0 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. When AC is not ' 0 ', PC is incremented +2 .	
	BANZ X	$\begin{array}{cc} 0101 & 0 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \end{array}$	$\begin{aligned} & 0 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{AC} \neq 0 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{x}_{10} \text { to } \mathrm{x}_{0} \end{aligned}$	2	2	When AC is not ' 0 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. When $A C$ is ' 0 ', PC is incremented +2 .	
	BCNH X	$\begin{array}{cc} 0110 & 0 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \end{array}$	$\begin{aligned} & 0 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{CF} \neq 1 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \end{aligned}$	2	2	When CF is ' 0 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. When CF is ' 1 ', PC is incremented +2 .	
	$\mathrm{BCH} \times$	$\begin{array}{cc} 0111 & 0 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \end{array}$	$\begin{aligned} & 0 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { If } \mathrm{CF}=1 \text { then } \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \end{aligned}$	2	2	When CF is ' 1 ', data specified by X_{10} to X_{0} is loaded to PC and jumps. When CF is ' 0 ', PC is incremented +2 .	
	PAGE	0001	0001	PAGE $\leftarrow[\mathrm{M}$ (DP)]	1	1	Memory M (DP) contents loaded to PAGE latch.	
	JMP*	0001	0000	$\begin{aligned} & \mathrm{PC}_{10} \text { to } \mathrm{PC}_{08} \leftarrow(\mathrm{PAGE}) \\ & \mathrm{PC}_{07} \text { to } \mathrm{PC}_{04} \leftarrow(\mathrm{AC}) \\ & \mathrm{PC}_{03} \text { to } \mathrm{PC}_{00} \leftarrow[\mathrm{M}(\mathrm{DP})] \end{aligned}$	1	1	Unconditionally jumps to page specified by PAGE and address whose loworder 8 bits are specified by contents of AC and memory M (DP).	
	ROM0	$\begin{aligned} & 1100 \\ & 0010 \end{aligned}$	$\begin{aligned} & 1000 \\ & 0000 \end{aligned}$	$\mathrm{PC}_{11} \leftarrow 0$	2	2	Select ROM bank 0.	
	ROM1	$\begin{aligned} & 1100 \\ & 0010 \end{aligned}$	$\begin{aligned} & 1000 \\ & 0001 \end{aligned}$	$\mathrm{PC}_{11} \leftarrow 1$	2	2	Select ROM bank 1.	
	JSR X	$\begin{array}{cc} 1010 & 0 \\ x_{7} x_{6} x_{5} x_{4} & x_{1} \end{array}$	$\begin{aligned} & 0 x_{10} x_{9} x_{8} \\ & x_{3} x_{2} x_{1} x_{0} \end{aligned}$	$\begin{aligned} & \text { STACK } \leftarrow(P C)+2 \\ & \left(\mathrm{PC}_{10} \text { to } \mathrm{PC}_{0}\right) \leftarrow \mathrm{X}_{10} \text { to } \mathrm{X}_{0} \end{aligned}$	2	2	Current PC +2 contents are saved in STACK, data specified by X_{10} to X_{0} is loaded to PC and sub-routine is called.	
	RST	0001	0011	$\mathrm{PC} \leftarrow$ (STACK)	1	1	Returns PC contents saved in STACK to PC and returns from sub-routine.	
	SPC0	$\begin{aligned} & 1100 \\ & 0010 \end{aligned}$	$\begin{aligned} & 1001 \\ & 0000 \end{aligned}$	$\mathrm{SPC} \leftarrow 0$	2	2	Resets strobe pointer control bit (SPC) to '0'.	SPC
	SPC1	$\begin{aligned} & 1100 \\ & 0010 \end{aligned}$	$\begin{aligned} & 1001 \\ & 0001 \end{aligned}$	$\mathrm{SPC} \leftarrow 1$	2	2	Sets strobe pointer control bit (SPC) to '1'.	SPC
	CSEC	1111	1011	$\phi 11$ to $\phi 15 \leftarrow 0$	1	1	Resets high-order 4 bits of divider circuit.	$\begin{aligned} & \hline \text { SCF0 } \\ & \text { SCF4 } \end{aligned}$
	RWDT	1111	1001	$($ WDT $) \leftarrow 0$	1	1	Resets Watchdog Timer counter.	

LC573100 Series Instructions Map

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	HALT	TAAT	TWRT	-	CSP	CST	RC5	SC5	JMP X							
1	JMP*	PAGE	MTR	RTS	-	-	-	IN	ASRO	ASR1	ASLO	ASL1	SDPL	SDPH	EDPL	EDPH
2	MVI X															
3	LDI X															
4	BAZ X								BAB0 X							
5	BCNH X								BAB1 X							
6	BCNH X								BAB2 X							
7	$\mathrm{BCH} X$								BAB3 X							
8	ADC	SBC	ADD	SUB	ADN	AND	EOR	OR	ADC*	SBC*	ADD*	SUB*	ADN*	AND*	EOR*	OR*
9	ADCI	SBCI	ADDI	SUBI	ADNI	ANDI	EORI	ORI	INC	DEC	IDPL	DDPL	IDPH	DDPH	ISP	DSP
A	JSR X								IPM	LDA	LSP	LHLT	L500	STA	SSP	IPS
B	MDPL X															
C	MDPH X				-				ROMX	SPCX	-					
D	SIC X															
E	MSP X															
F	RCF	SCF	NOP	NOP	SPDR X				-	RWDT	-	CSEC	OUT	LDPL	LDPH	NOP

XXX: 1 Byte-1 Cycle instruction

XXX : 2 Byte-2 Cycle instruction

ROMX : ROM0 instruction $(\mathrm{C} 820 \mathrm{H})$,
ROM1 instruction (C 821 H)

SPCX : SPC0 instruction (C920H),
SPC1 instruction (C921H)
\square Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2001. Specifications and information herein are subject to change without notice.

[^0]: Note : CR is 455 kHz , S-PORT : M-PORT : Input lead Tr is ON . RES terminal has resistor built-in and is OPEN. I/O-PORT is set at Output Mode and data is ' H '.

