FEATURES

- High speed 8-to-1 multiplexing
- On chip decoding
- Multifunction capability
- Inverting and Non-Inverting outputs
- Both outputs are 3-State for further multiplexer expansion

DESCRIPTION

The 74F251A is a logic implementation of a single 8-position switch with the switch position controlled by the state of three Select (S0, $\mathrm{S} 1, \mathrm{~S} 2$) inputs. True (Y) and complementary (Y) outputs are both provided. The output enable ($\overline{O E}$) is active Low. When $\overline{O E}$ is High, both outputs are in High impedance state, allowing multiple output connections to a common bus without driving nor loading the bus significantly. All but one device must be in High impedance state to avoid high currents that would exceed the maximum ratings when the outputs of the 3-State devices are tied together. When the output of more than one device is tied together the user must ensure that there is no overlap in the active Low portion of the output enable voltages.

PIN CONFIGURATION

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 251 A	4.5 ns	19 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	PKG DWG \#
	COMMERCIAL RANGE $\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathbf{T}_{\mathrm{amb}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
	N74F251AN	
16-pin plastic SO	N74F251AD	SOT162-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
I0-I7	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S0-S2	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
OE	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Y, Y	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

IEC/IEEE SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	
S2	S1	S0	OE	\mathbf{Y}	$\overline{\mathbf{Y}}$
X	X	X	H	Z	Z
L	L	L	L	I 0	$\overline{\mathrm{I}} 0$
L	L	H	L	I 1	$\overline{\mathrm{I}} 1$
L	H	L	L	I 2	I 2
L	H	H	L	I 3	$\overline{\mathrm{I}} 3$
H	L	L	L	I 4	T 4
H	L	H	L	I 5	$\overline{\mathrm{I}} 5$
H	H	L	L	I 6	I 6
H	H	H	L	I 7	$\overline{\mathrm{I}} 7$

NOTES:

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
X = Don't care
$Z=$ High impedance "off" state

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\mathrm{OUT}}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
IIK	Input clamp current			-18	mA
IOH	High-level output current			-3	mA
IOL	Low-level output current			24	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7		3.3		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {cC }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{l}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {r }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
IOZH	Off-state output current High-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
IozL	Off-state output current Low-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-50	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
I_{CC}	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$			20	27	mA		
		$\mathrm{I}_{\text {CCL }}$				17	24	mA		
		ICCZ				21	29	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=+5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay In to Y	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay In to Y	Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay Sn to Y	Waveform 1 Waveform 2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHHL}} \\ & \hline \end{aligned}$	Propagation delay Sn to $\overline{\mathrm{F}}$	Waveform 1 Waveform 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$	Output Enable time $\overline{\mathrm{OE}}$ to Y	Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time OE to Y	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL }^{2} \end{aligned}$	Output Enable time OE to F	Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \mathrm{t}_{\mathrm{pLL}} \\ & \hline \end{aligned}$	Output Disable time OE to Y	Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

Waveform 1. For Inverting Outputs

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. For Non-Inverting Outputs

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

