TOSHIBA TA8578FN

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8578FN

SHOCK SENSOR IC (1ch VERSION)

TA8578FN detects an existence of external shock through the shock sensor and outputs.

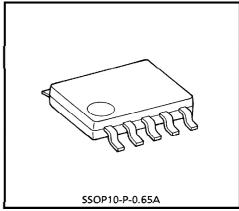
FEATURES

- TA8578FN operates from 5VDC single power supply voltage.
- Signal from the shock sensor is amplified according to setting gain, and is detected through the internal window comparator.
- TA8578FN incorporates 1-ch shock detecting circuitry.
- Input terminal of sensor signal is designed high impedance.

Input impedance = $50M\Omega$ (Typ.)

• LPF (Low Pass Filter) circuitry is incorporated.

Cut off frequency of LPF = 7kHz


- Sensitivity of shock detection can be adjusted by external devices.
- TA8578FN is designed for low power dissipation.

Active mode (Pin 3:5V) 2mA (Typ.)

Power-save mode (Pin 3 : 0V) 1.0μ A (Typ.)

Small package

SSOP10-P-0.65A (0.65mm pitch)

Weight: 0.04g (Typ.)

The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

BLOCK DIAGRAM

PIN FUNCTION

PIN No.	PIN NAME	FUNCTION					
1	SI	Connection terminal of shock sensor (Positive Polarity side)					
2	VR	Connection terminal of shock sensor (Reference voltage = 3.2V)					
3	PS	Power-save control terminal					
		(0V input = Power-save mode, 5V input = active mode)					
4	OUT	Output terminal (Active low: Output = "L" when shock is detected.)					
5	GND	Ground terminal					
6	V _{CC}	Power supply voltage					
7	ВО	Op-Amp output terminal					
8	BI	Op-Amp input terminal					
9	AO	× 100 (100 times) amplifier's output terminal					
	ВҮР	Connection terminal of external capacitance to set ×20 (20 times) amplifier's					
10		again.					
		In no connection case, gain of internal Amp decreases to $\times 5$ (5 times) Amp.					

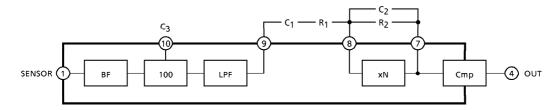
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTICS	SYMBOL	RATINGS	UNIT
Power Supply Voltage	Vcc	7	٧
Input Voltage to PS Terminal	V _{IN}	-0.3~V _{CC} +0.3	٧
Power Dissipation	PD	300	mV
Storage Temperature	T _{stg}	- 55∼150	°C

RECOMMEND OPERATING CONDITION

CHARACTERISTICS	SYMBOL	RATINGS	UNIT
Power Supply Voltage	Vcc	4.2~5.5	V
Operating Temperature	TOPR	- 25∼85	°C

ELECTRICAL CHARACTERISTICS (1) (Unless Otherwise Specified, $V_{CC} = 5V$, $T_0 = 25^{\circ}C$) * : Marked parameters are reference data.


			i i i i i i i i i i i i i i i i i i i					
CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Supply Voltage	VCC	_		4.2	-	5.5	٧	
Supply Current (In active mode)	lCCD	-	Pin 3 (PS) = 5V	_	2	2.6	mΑ	
Supply Current (In PS mode)	lccs	_	Pin 3 (PS) = 0V	_	0.1	1.0	μΑ	
(REGULATOR)								
Output Voltage	v_{ref}	_	Pin 2 (VR)	3.1	3.25	3.4	V	
Variation Level of Pin2 (VR)	ΔV_{ref}	_	$I_{\text{source}} = -200 \mu A$	_	- 30	- 60	mV	
(INPUT BUFFER)								
* Input Impedance	Zin	_	Pin 1 (SI)	30	50	_	$M\Omega$	
Different Voltage drop between SI and VR	VR – SI	_	$Ta = -25 \sim 85^{\circ}C$ $Voltage (VR) - (SI) $	- 200	_	200	mV	

ELECTRICAL CHARACTERISTICS (2) (Unless Otherwise Specified, $V_{CC} = 5V$, $Ta = 25^{\circ}C$) * : Marked parameters are reference data.

": Marked parameters are reference da						data.			
CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT		
(No.9 PIN)									
* Gain of Internal ×100 AMP	G _V 1	_		39	40	41	dB		
Internal LPF Cut-off Frequency	fc	ı		5	7	10	kHz		
H Level Output Voltage	$V_{\sf oh}$	_	I _{source} = -0.6mA	V _C C – 1	V _C C - 0.9	_	٧		
L Level Output Voltage	V _{ol}	_	$I_{sink} = 100 \mu A$	_	0.1	0.6	>		
(No.10 PIN)									
Internal Impedance	Z10			16	20	24	k Ω		
(Op-Amp)									
* Op-Amp f _T	fŢ	_		_	1.5	_	MHz		
* DC Gain	G _V 2	_		80	90	_	dB		
* (+)Input Voltage	V _{IN} +	_		1.9	2	2.1	V		
Input Current	IIN			_	- 35	- 80	nΑ		
* Offset Voltage	Voff	_		-7	0	7	mV		
H Level Output Voltage	V _{oh (amp)}		I _{source} = -0.6mA	V _C C – 1	V _{CC} − 0.9	_	>		
L Level Output Voltage	V _{ol} (amp)	_	$I_{\text{sink}} = 50 \mu A$	_	0.1	0.6	V		
(COMPARATOR & 4PIN)	and the second s								
* Trip Voltage	Vtrp	_	To compare with Vin(+)	± 0.45	± 0.5	± 0.55	V		
H Level Output Voltage	Voh (cmp)	_	$I_{\text{source}} = -35\mu\text{A}$	V _C C – 1	V _C C - 0.5	_	٧		
L Level Output Voltage	Vol (cmp)	_	I _{sink} = 0.6mA	_	0.15	0.3	٧		
(3PIN)									
H Level Input Voltage	V_{IH}	_		3.0		_	V		
L Level Input Voltage	V _{IL}	_	I _{CC} <1.0μA			1.0	>		

TOSHIBA TA8578FN

APPLICATION NOTE

C₁, R₁: to design an external HPF.

R₁, R₂: to determine the OpAmp Gain (xN).

R₂, C₂: to design an external LPF.

 C_3 : to design an internal HPF with internal Resistor 20k Ω .

In no connection case, Gain of internal Amp decreases to

 \times 5 (five-times) Amp.

• Method of the external parts setting:

When G-force Sensor (Sensor sensibility = n (mV/G), Sensor capacitance = a (pF)) is used to detect external shock of c (G), the external parts are determined as following;

(Gain setting)

 $500 / (n \times c) = g [times]$

g/100 = g (OpAmp) [times] (In the case of using the internal $\times 100$ (times) Amp)

If $R_1 = 20k\Omega$, $R_2 = 20k\Omega \times g$ (OpAmp) [k Ω]

(fc (cut-off frequency) of HPF setting)

fc (HPF1) = 1 / (2 × π × 20k Ω × C₃) [Hz]

fc (HPF2) = $1/(2 \times \pi \times R_1 \times C_1)$ [Hz]

(fc (cut-off frequency) of LPF setting)

fc (LPF1) = $1/(2 \times \pi \times R_2 \times C_2)$ [Hz]

(Safety Coefficient : SC)

SC = g/a

Ex) CD-ROM (to detect 0.5G shock)

SENSOR R₁ R₂ C₁ C₂ C₃ GAIN SC (*Note) 240p 2mV/G $8.2k\Omega$ $820k\Omega$ 0.47μ F 390pF OPEN 500 2.1 160p 1mV/G $22k\Omega$ $220k\Omega$ 0.22μ F 1200pF 0.22μ F 1000 6.3

Ex) HDD (to detect 5G shock)

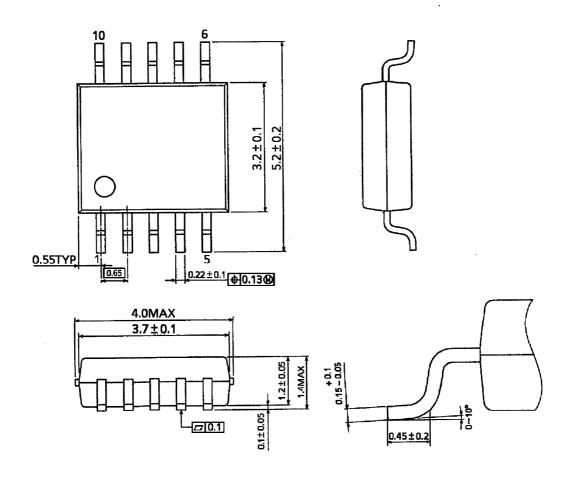
SENSOR \times 45deg R₁ R₂ C₁ C₂ C₃ GAIN SC (*Note) 700p 0.1 mV/G 22k Ω 330k Ω 0.1 μF 68pF $0.1 \mu\text{F}$ 1500 2.2

(*Note)

Input-impedance of this device itself is extermely high as $50M\Omega$. Input-impedance of Pin 1 is determined with the sensor-capacitance. From this reason, there is a possibility to cause an oscillation on monitoring-terminals like Pin 7 or Pin 4.

We guess CMOS-level output (0-5 Voltage swing)'s electric field of Pin 4 run into Pin 1 through the evaluation board or air. We recommend to design a surface-pattern of constant Voltage like GND on back-side of Sensor & device.

It is difficult to prevent from running into Pin 1. We try to define the SC (Safety Coefficient) parameter which figures above oscillation level.


SC = g (total gain) / a (Sensor capacitance)

From our result of experiment, we judged a case of SC under 5 is safe for the oscillation on our evaluation board (TA8578FN2 board).

Please design G-force shock sensor system under consideration about SC parameter.

OUTLINE DRAWING SSOP10-P-0.65A

UNIT: mm

Weight: 0.04g (Typ.)