

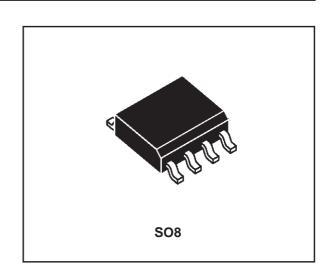
TPN3021

Application Specific Discretes
A.S.D.TM

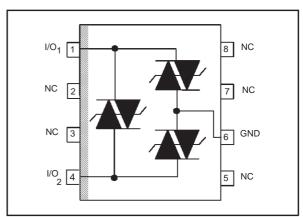
TRIPOLAR OVERVOLTAGE PROTEC-TION FOR NETWORK INTERFACES

FEATURES

- TRIPLE CROWBAR PROTECTION
- PEAK PULSE CURRENT : IPP = 30 A, 10/1000 µs
- VERY LOW CAPACITANCE: C = 30 pF
- PROTECTS HIGH-SPEED LINE DRIVERS / RECEIVERS


Dedicated to dataline protection, this device provides a triple protection function. It ensures the same protection capability with the same breakdown voltage both in common mode and in differential mode.

With a stand-off voltage of 28V and a very low capacitance, this device is able to protect high-speed interfaces such as T1/E1 interface.


COMPLIES WITH THE FOLLOWING STANDARDS:

- IEC801-2 15kV (air discharge)- IEC801-4 40A (repetitive 2.5kHz)

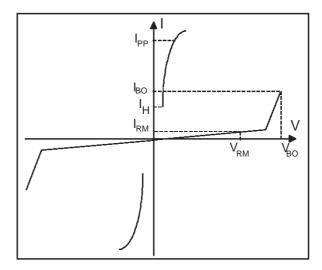
- IEC801-5 1.2/50μs 4kV 8/20μs 100A

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS $(T_{amb} = 25 \, ^{\circ}C)$

Symbol	Parameter	Value	Unit	
I _{pp}	Peak pulse current	10/1000 μs 8/20 μs	30 150	A A
T _{stg} Tj	Storage temperature range Maximum junction temperature	- 40 to + 150 150	°C °C	
TL	Maximum lead temperature for soldering duri	260	°C	

THERMAL RESISTANCE


Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient	170	°C/W

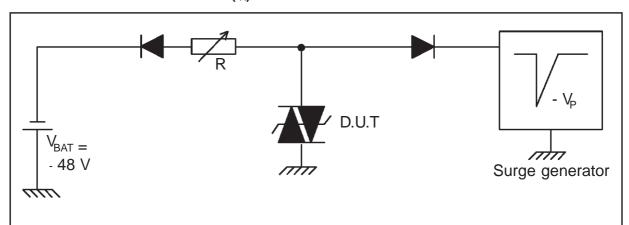
TM: ASD is a trademark of SGS-THOMSON Microelectronics.

February 1998 - Ed : 2

ELECTRICAL CHARACTERISTICS (T_{amb}=25°C)

Symbol	Parameter		
V _{RM}	Stand-off voltage		
Vво	Breakovervoltage		
V _{BR}	Breakdown voltage		
lΗ	Holding current		
I _{BO}	Breakovercurrent		
I _{RM}	Leakage current at V _{RM}		
I _{PP}	Peak pulse current		
С	Capacitance		
αΤ	Temperature coefficient		

Туре	I _{RM} @ V _{RM} max.		V _{во} @ во max.		I _H min.	typ.	max.	αT typ.
	note 1				note 2	not	te 3	note 4
	μΑ	V	V	mA	mA	pF	pF	10 ⁻⁴ /°C
TPN3021	4	28	38	100	30	25	30	8

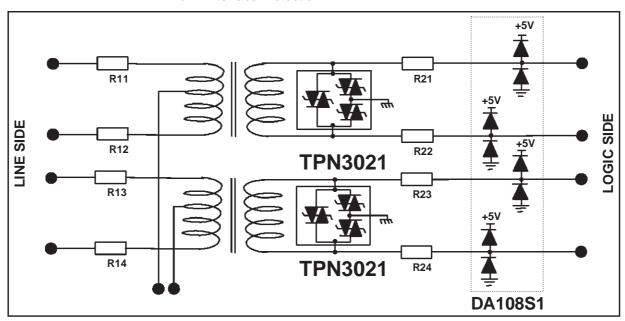

Note 1: Between any I/Opin and Ground or between I/O1 and I/O2.

Note 2: See the functional holding current (IH) test circuit.

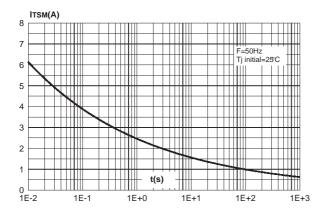
Note 3: Between any I/Opin and GND or between I/O1 and I/O2 at 0V bias, VRMS = 30 mV, F = 1 MHz.

Note 4: $\Delta V_{BO} = \alpha T \times (T_{amb} - 25) \times V_{BO}(25^{\circ}C)$.

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT: GO-NO GO TEST



This is a GO-NO GO test which allows to confirm the holding current (IH) level in a functional test circuit.


TEST PROCEDURE:

- Adjust the current level at the I_H value by short circuiting the D.U.T.
- Fire the D.U.T. with a surge current : $I_{pp} = 10A$, $10/1000 \,\mu s$.
- The D.U.T. will come back to the off-state within a duration of 50 ms max.

APPLICATION CIRCUIT: T1/E1 Interface Protection

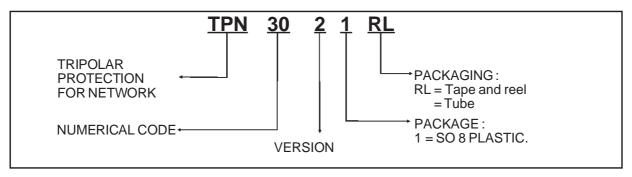
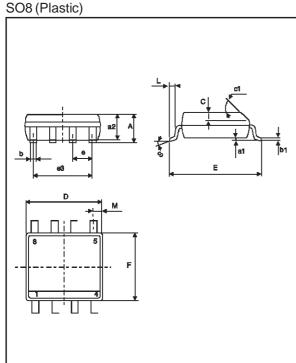


Fig. 1: Surge peak current versus overload duration.

TPN3021


ORDER CODE

Marking

Туре	Marking		
TPN3021	TPN302		

PACKAGE MECHANICAL DATA

	DIMENSIONS						
REF.	Millimetres			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С		0.50			0.020		
c1			45°	(typ)			
D	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.15		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max)						

Packaging = Products supplied in antistatic tubes or tape and reel.

Weight = 0.08 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.