

Functional Description

The ACTQ823 consists of nine D－type edge－triggered flip－ flops．These have 3－STATE outputs for bus systems orga－ nized with inputs and outputs on opposite sides．The buff－ ered clock（CP）and buffered Output Enable（ $\overline{\mathrm{OE} \text { ）are }}$ common to all flip－flops．The flip－flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW－to－HIGH CP transition．With OE LOW，the contents of the flip－flops are available at the out－ puts．When OE is HIGH，the outputs go to the high imped－ ance state．Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip－flops．In addition to the Clock and Output

Enable pins，there are Clear（ $\overline{\mathrm{CLR}}$ ）and Clock Enable（ $\overline{\mathrm{EN}}$ ） pins．These devices are ideal for parity bus interfacing in high performance systems．
When $\overline{C L R}$ is LOW and $\overline{O E}$ is LOW，the outputs are LOW． When $\overline{\text { CLR }}$ is HIGH，data can be entered into the flip－flops． When $\overline{E N}$ is LOW，data on the inputs is transferred to the outputs on the LOW－to－HIGH clock transition．When the EN is HIGH，the outputs do not change state，regardless of the data or clock input transitions．

Function Table

	Inputs			Internal	Output	Function	
$\overline{\text { OE }}$	$\overline{\text { CLR }}$	$\overline{\text { EN }}$	CP	D	Q	O	
H	X	L	\sim	L	L	Z	High Z
H	X	L	\sim	H	H	Z	High Z
H	L	X	X	X	L	Z	Clear
L	L	X	X	X	L	L	Clear
H	H	H	X	X	NC	Z	Hold
L	H	H	X	X	NC	NC	Hold
H	H	L	\sim	L	L	Z	Load
H	H	L	\sim	H	H	Z	Load
L	H	L	\sim	L	L	L	Load
L	H	L	\sim	H	H	H	Load

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level $\quad \mathrm{Z}=$ High Impedance $\mathrm{L}=$ LOW Voltage Level $\quad \sim=$ LOW－to－HIGH Transition $\mathrm{X}=$ Immaterial $\quad \mathrm{NC}=$ No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

Absolute Maximum Ratings（Note 1）		Junction Temperature（ T_{J} ）
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	PDIP $140^{\circ} \mathrm{C}$
DC Input Diode Current（ $1_{1 /}$ ）		Recommended Operating
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	－20 mA	Conditions
$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	＋20 mA	
DC Input Voltage（ V_{l} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Supply Voltage（ V_{CC} ） 4.5 V to 5.5 V
DC Output Diode Current（lok）		
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Output Voltage（ V_{O} ） 0 V to V_{CC}
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	Operating Temperature（ T_{A} ）$\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Output Voltage（ V_{0} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
DC Output Source		$\mathrm{V}_{1 /}$ from 0.8 V to 2.0 V
or Sink Current（10）	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\text {cc }} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC $V_{C C}$ or Ground Current per Output Pin（ICC or IGN）	$\pm 50 \mathrm{~mA}$	Note 1：Absolute maximum ratings are those values beyond which dam－ age to the device may occur．The databook specifications should be met， without exception，to ensure that the system design is reliable over its
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	power supply，temperature，and outputinput loading variables．Farirchild does not recommend operation of FACTM cricuits outside databook specifi－
DC Latch－Up Source or Sink Current	$\pm 300 \mathrm{~mA}$	cations．

DC Electrical Characteristics for ACTQ

Symbol	Parameter	$\begin{gathered} \hline \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \\ \hline \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \\ & \hline \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
loz	Maximum 3－STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
ССт	Maximum ICC／Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
OLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
ІОНD	Output Current（Note 2）	5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figure 1，Figure 2 （Note 5）（Note 6）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	Figure 1，Figure 2 （Note 5）（Note 6）
$\overline{\mathrm{V}} \mathrm{IHD}$	Minimum HIGH Level Dynamic Input Voltage	5.0	1.9	2.2		V	（Note 5）（Note 7）
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	（Note 5）（Note 7）
Note 2：All outputs loaded；thresholds on input associated with outpu Note 3：Maximum test duration 2.0 ms ，one output loaded at a time． Note 4：Maximum test duration 2.0 ms ，one output loaded at a time． Note 5：PDIP package． Note 6：Max number of outputs defined as（n）．Data inputs are driven			r test． 3V. One	t @ GN			

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement.

$\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference.
Input pulses have the following characteristics: $f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew < 150 ps .
FIGURE 1. Quiet Output Noise Voltage Waveforms
5. Set the HFS generator input levels at $O V$ LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for $A C$ devices. Verify levels with an oscilloscope.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $V_{\text {OLP }}$ and $V_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case transition for active and enable.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$\mathrm{V}_{\mathrm{ILD}}$ and $\mathrm{V}_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

