NEC's 4.8 TO 5.85 GHZ HIGH POWER GaAs MMIC SPDT SWITCH

UPG2022TB

FEATURES

OPERATING FREQUENCY:

f = 4.8 to 5.85 GHz

• LOW INSERTION LOSS:

0.8 dB TYP. @ 4.9 to 5.2 GHz 0.9 dB TYP. @ 5.8 GHz

POWER HANDLING:

 $P_{in (0.1dB)} = +30 \text{ dBm TYP.} @ 4.9 \text{ to } 5.2 \text{ GHz}$ $P_{in (0.1dB)} = +31 \text{ dBm TYP.} @ 5.2 \text{ to } 5.85 \text{ GHz}$

CONTROL VOLTAGE:

 $V_{cont} = +2.8 \text{ V/0 V}$

HIGH ISOLATION:

(Between INPUT and OUTPUT) = 29 dB TYP. @ $5.85 \, \mathrm{GHz}$ (Between OUTPUT1 and OUTPUT2) = $18 \, \mathrm{dB} \, \mathrm{TYP}$. @ $5.85 \, \mathrm{GHz}$

INPUT/OUTPUT RETURN LOSS:

10 dB MIN. @ 4.8 to 5.85 GHz

• SWITCHING SPEED:

20 ns @ trise/tfall (10/90% RF)

• 6-PIN SUPER MINIMOLD PACKAGE:

 $(2.0 \times 1.25 \times 0.9 \text{ mm})$

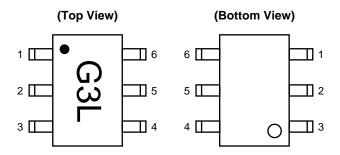
LEAD FREE

DESCRIPTION

NEC's UPG2022TB is a high power GaAs MMIC SPDT (Single Pole Double Throw) switch. This device can operate from 4.8 to 5.85 GHz with low insertion loss. It is housed in a compact, lead free 6-pin super minimold package.

APPLICATIONS

- 5 GHz BAND WLAN
- 5 GHz CORDLESS PHONES
- 5 GHz ELECTRONIC TOLL COLLECTION
- 5 GHz FIXED WIRELESS ACCESS


ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
UPG2022TB-E4-A	6-pin super minimold	G3L	Embossed tape 8 mm wide Pin 4,5,6 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: UPG2022TB-A

PIN CONNECTIONS

PIN NO.	PIN NAME	
1	OUTPUT2	
2	GND	
3	OUTPUT1	
4	V _{cont1}	
5	INPUT	
6	V _{cont2}	

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Switch Control Voltage	Vcont1, 2	-6.0 to +6.0 Note1	V
Input Power	Pin	+36	dBm
Total Power Dissipation	Ptot	0.15 Note2	W
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-65 to +150	°C

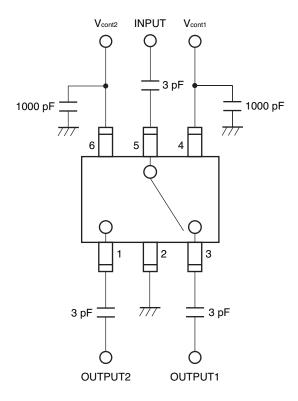
Notes 1. $|V_{cont1} - V_{cont2}| \le 6.0 \text{ V}$

2. Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, $T_A = +85^{\circ}C$

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Switch Control Voltage (H)	V _{cont (H)}	2.7	2.8	3.3	V
Switch Control Voltage (L)	V _{cont} (L)	-0.2	0	0.2	V
Operating Frequency	f	4.8		5.85	GHz
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (TA = +25°C, V_{cont} = 2.8 V/0 V, Z_O = 50 Ω , DC blocking capacitors = 3 pF, Each port, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Insertion Loss	Lins	f = 4.9 GHz	-	0.8	1.1	dB
		f = 5.2 GHz	-	0.8	1.1	dB
		f = 5.8 GHz	-	0.9	1.1	dB
Isolation 1	ISL1	f = 4.9 GHz	12	15	_	dB
(between OUTPUT1 and		f = 5.2 GHz	13	16	-	dB
OUTPUT2)		f = 5.8 GHz	15	18	-	dB
Input Return Loss	RLin	f = 4.9 GHz	10	17	-	dB
		f = 5.2 GHz	10	18	-	dB
		f = 5.8 GHz	10	15	_	dB
Output Return Loss	RLout	f = 4.9 GHz	10	19	-	dB
		f = 5.2 GHz	10	21	_	dB
		f = 5.8 GHz	10	19	-	dB
0.1 dB Gain Compression Input	Pin (0.1 dB)	f = 4.9 to 5.2 GHz	28	30	_	dBm
Power		f = 5.2 to 5.85 GHz	30	31	-	
Switching Control Speed	tsw	trise/tfall (10/90% RF)	_	20	-	ns
Switching Control Current	Icont		-	0.5	1	μΑ

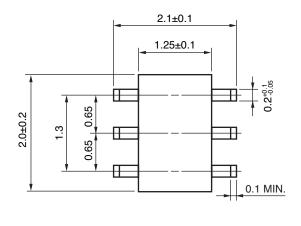
STANDARD CHARACTERISTICS FOR REFERENCE

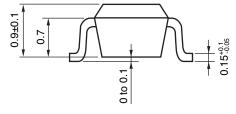
 $(TA = +25^{\circ}C, V_{cont} = 2.8 \text{ V/O V}, Z_{O} = 50 \Omega, DC \text{ blocking capacitors} = 3 pF, Each port, unless otherwise specified)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Isolation 2	ISL2	f = 4.9 GHz	_	17	-	dB
(between INPUT and OUTPUT)		f = 5.2 GHz	_	20	-	dB
		f = 5.8 GHz	-	29	-	dB

EVALUATION CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.


TRUTH TABLE OF SWITCHING BY CONDITION OF CONTROL VOLTAGE


			Vcc	іт1		
		Vcont (H)		Vcont (L)		
VCONT2	VCONT (H)	INPUT —	Note O— OUTPUT1 O— OUTPUT2	INPUT ———	O— OUTPUT1 O— OUTPUT2	
	Vcont (L)	INPUT —	OUTPUT1 OUTPUT2	INPUT —	Note O— OUTPUT1 O— OUTPUT2	

Note In case of VCONT1 = VCONT2 = High or VCONT1 = VCONT2 = Low, (that is same control voltage for both pins), input signal of INPUT (Pin 5) is output from OUTPUT1 (Pin 3) and OUTPUT2 (Pin 1).

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT:mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature	: 260°C or below : 10 seconds or less	IR260
	Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

A Business Partner of NEC Compound Se