

DOLBY PRO LOGIC SURROUND DECODER

■ GENERAL DESCRIPTION

The NJW1103 is a surround processor including all of the necessary circuits of Dolby Pro Logic Surround decoder and digital delay.

In addition to Dolby Pro Logic Surround function, it performs easily other surround function such as Hall, Live, Disco and others.

It also includes echo and microphone mixing functions for Karaoke.

PACKAGE OUTLINE

NJW1103FC3

Dolby and double-D symbol are trademarks of Dolby Laboratories Licensing Corporation. San Francisco, CA94103-4813. USA.

This device is available only to licensees of Dolby Lab.

Licensing and application information may be obtained from Dolby Lab.

■ FEATURE

- Operating Voltage: Vcc=9V(Analog Block), VDD=5V(Digital Block)
- Digital Delay on chip
- Center and Surround Channel Level Trimmer : -31 TO OdB / 1dB step (OdB = Dolby Level)
- Karaoke Function (Echo, Mic. mixing)
- Serial Data Interface (3-wire)

DATA, REQ, SCK

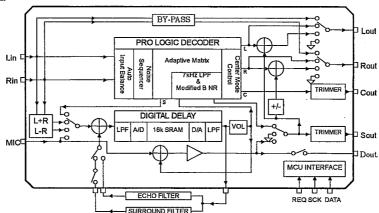
- Bi-CMOS Technology
- Package Outline

QFP80

■ FUNCTION

[Dolby Pro Logic Surround]

- Automatic input balance
- Noise sequencer
- Adaptive matrix
- Center channel control (wideband, normal, phantom)
- Modified B-type noise reduction
- 7kHz low-pass filter
- Dolby 3 stereo mode
- Digital time delay


[Other Surround]

- Sound field control
- Front mixing control
- Digital time delay

[Karaoke]

- Echo control
- Mic mixing

■ BLOCK DIAGRAM

MADE ABSOLUTE MAXIMUM RATINGS (T = 25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V cc V pp	1 1	V
Power Dissipation	P	1. 37	w
Operating Temperature Range Storage Temperature Range	Topr Tats	-20~+75 -40~+125	ဗင

■ ELECTRICAL CHARACTERISTICS ($T_0 = 2.5$ °C, $V_{00} = 1.0$ V, $V_{DD} = 5$ V, $V_{1N} = 3.0$ 0 mV $_{rms}/1$ k H z)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
→ OVERALL						
Supply Voltage Range	Vcc	•	8	9	10	V
	VDD		4. 5	5	5. 5	ν
Supply Current	lcc	No Signal	—	25	l —	mA
	IDD	No Signal	_	25	_	mA
Reference Voltage	V_{ref}	No Signal	3. 5	4. 0	4. 5	V
Threshold voltage	$V_{\rm thh}$	Digital input high level	0. 7Vpb	_	V _{DD}	٧
	V t h 1	Digital input low level	0.0	_	0. 3VDD	ν
INPUT AUTO BALANCE		•	'	•	,	'
Capture Range	CPR	·	-	±5	—	dB
Error Correction	CER		_	±4		dB
▶ ADAPTIVE MATRIX		•	•	ı		'
Output Level Accuracy	⊿ ۷。ı	L, R, S' ch. out	-0.5	0	0. 5	dB
relative to Cch.					<u>.</u>	
Matrix Rejection relative	MR	L, R, C, S' ch. out	25	40	i —	dB
Headrrom	HR-AM	Vcc=9V at THD=1%	15	17	-	dB
Total Harmonic Distortion	THD-AM	L, R, C, S' ch. out at 4ch. mode		0.05	0. 2	. %
		L, Rch. out at 2ch. mode		0.002	0. 05	%
Signal to Noise Ratio	SN-AM	Rg=0, wt:CCIR/ARM 4ch	75	80		dB
		L, Rch. out at 2ch. mode	93	100	_	dB
NOISE SEQUENCER		I	ı	I	I	1
Output Noise Level	Vno	1	-15.0	-12. 5	-10.0	d₿
Output Noise Level	∠V No	L, R, S' ch. out	-0.5	0.0	0. 5	dB
Accuracy relative to Cch.						
MODIFIED B-TYPE NOISE REC	DUCTION	I	1		ī	
Voltage Gain	GV-NR	V _{in} = 0dBd, f=100Hz	I —	9. 2	I —	dB
Decode Response 1	DEC1	V _{in} = OdBd, f=1. OkHz	-1.6	-0. 1	1.4	dB
Decode Responce 2	DEC2	V _{1 n} =-15dBd, f=1, 4kHz	-3.0	-1.5	0.0	dB
Decode Responce 3	DEC3	V _{1,n} =-20dBd, f=1. 4kHz	-4. 9	-3, 4	-1.9	dB
Decode Responce 4	DEC4	V _{1.n} =-40dBd, f=5, 0kHz	-6. 8	-5.3	-3. 8	dB
Total Harmonic Distortion	THD-NR	Vin= OdBd, f=1kHz	_	0.07	0.3	%
Headroom	HR-NR	Vcc=9V. THD=1%	15	17	_	dB
Signal to Noise Ratio	SN-NR	Rg=O, wt:CCIR/ARM	73	78		dB

ELECTRICAL CHARACTERISTICS ($T_a = 2.5 \,^{\circ}\text{C}$, $V_{oo} = 1.0 \,\text{V}$, $V_{DD} = 5 \,\text{V}$, $V_{IN} = 3.00 \,\text{m} \,\text{V}_{rme} / 1 \,\text{k} \,\text{Hz}$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
OTHER SURROUND						
Total Harmonic Distortion	THD-08	V: n=OdBd, f=1kHz,	-	0. 05	0. 2	%
		L+R,L-R output				
Headroom	HR-OS	Vcc=9V, THD=1%,	15	17		dB
		L+R,L-R output				
Signal to Noise Ratio	SN-OS	Rg=0, wt:CCIR/ARM	85	90	_	dB
•		L+R,L-R output		! !		
C, S CHANNEL TRIMMER						
Full Scale	FS	Digital Input = -31dB	-25	-31	-37	dB
Trimmer Steps	NL.	Digital Input = -1,-2,-4,	-0. 6	1. 0	1.4	dB
		−8, −16dB				
DIGITAL TIME DELAY			1 40 6		م مد ا	
Delay Time	Td		12. 4	15. 4	18. 4	ms
			17. 0	20. 0	23.0	ms
			25. 6	28. 6	31.6	ms
			38. 0	41. 0	44.0	ms
			46. 2	49. 2	52. 2	ms
			137. 5	147. 5	157. 5	ms
	_		186. 6	196. 6	206. 6	ms
Total Gain	Gv		-3. 0	0. 0	3.0	dB
Total Harmonic Distortion		Td=15. 4ms	_	0. 3	0.6	%
		Td=20. 0ms		0. 3	0.6	%
		Td=28. 6ms	_	0. 5	1.0	%
		30kHz LPF Td=41.0ms		0.6	1.2	%
		Td=49. 2ms	_	0.7	1.4	%
		Td=147. 5ms	-	1.5	3.0	%
	,,	Td=196.6ms	0.7	2. 0	4.0	%
Maximum Output Voltage	Vomax	30kHz LPF THD=10%	0. 7	1. 0 -92	-80	Vrms dB
Output Noise Voltage	No	Td=15. 4ms	-			
		Td=20. 0ms		-92 -92	-80 -80	dB dB
		Rg=620 Ω Td=28. 6ms	_	-92 -90	-80 -75	dB
		Vi=OmVrms Td=41.0ms	-	-90 -90	-75 -75	
		JIS-A Td=49. 2ms	1 -			dB
		Td=147. 5ms		-82 77	-67 -62	dB
A DELLY VOLUME		Td=196.6ms	-	-77	-62	dB
DELAY VOLUME	l 0	l Val =Nav	1 0	. د ا		l dB
Total Gain	Gv	Vol.=Max	0	-70	6 -60	dB
Maximum Attenuation	ATTmax	Delay OFF mode, Vol.=min., JIS-A	"	-/0	-60	QD.

NJW1103

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.