64K x 16 Static RAM ## **Features** - 2.7V-3.6V operation - CMOS for optimum speed/power - Low active power (70 ns, LL version) - -54 mW (max.) (15 mA) - Low standby power (70 ns, LL version) - 54 μW (max.) (15 μA) - Automatic power-down when deselected - Independent control of Upper and Lower Bytes - . Available in 44-pin TSOP II (forward) and fBGA #### **Functional Description** The CY62126BV is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption by 99% when deselected. The device enters power-down mode when $\overline{\text{CE}}$ is HIGH. Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable ($\overline{\rm BLE}$) is LOW, then data from I/O pins (I/O₁ through I/O₈), is written into the location specified on the address pins (A₀ through A₁₅). If Byte High Enable ($\overline{\rm BHE}$) is LOW, then data from I/O pins (I/O₉ through I/O₁₆) is written into the location specified on the address pins (A₀ through A₁₅). Reading from the device is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing the write enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes. The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), the $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW). The CY62126BV is available in standard 44-pin TSOP Type II (forward pinout) and fBGA packages. ## Pin Configurations (continued) #### **fBGA** 62126BV-3 ## **Selection Guide** | | CY62126BV-55 | CY62126BV-70 | Units | |------------------------------|--------------|--------------|-------| | Maximum Access Time | 55 | 70 | ns | | Maximum Operating Current | 20 | 15 | mA | | Maximum CMOS Standby Current | 15 | 15 | μΑ | ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied–55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +4.6V DC Voltage Applied to Outputs in High Z State^[1].....-0.5V to V_{CC} +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. T_A is the "Instant On" case temperature. | Current into Outputs (LOW) | 20 mA | |--|---------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | (per MIL-31D-663, Method 3013) | | | Latch-Up Current | >200 mA | ## **Operating Range** | Range | Ambient
Temperature ^[2] | V _{CC} | | |------------|---------------------------------------|-----------------|--| | Industrial | −40°C to +85°C | 2.7V-3.6V | | ## **Electrical Characteristics** Over the Operating Range | | | | | | 62126BV | | | |------------------|--|--|-------|------|----------------------------|-----------------------|------| | Parameter | Description | Test Conditions | ; | Min. | Typ. ^[3] | Max. | Unit | | V _{OH} | Output HIGH Voltage | V _{CC} = Min., I _{OH} = -1.0 m/ | 4 | 2.2 | | | V | | V _{OL} | Output LOW Voltage | V _{CC} = Min., I _{OL} = 2.1 mA | | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | | 2.0 | | V _{CC} + 0.3 | V | | V _{IL} | Input LOW Voltage ^[1] | | | -0.3 | | 0.4 | V | | I _{IX} | Input Load Current | $GND \leq V_{I} \leq V_{CC}$ | | -1 | | +1 | μΑ | | l _{OZ} | Output Leakage Current | $\begin{aligned} &\text{GND} \leq \text{V}_{I} \leq \text{V}_{CC}, \\ &\text{Output Disabled} \end{aligned}$ | | -1 | | +1 | μΑ | | I _{CC} | V _{CC} Operating | V _{CC} = Max., | 55 ns | | | 20 | mA | | | Supply Current | $I_{OUT} = 0 \text{ mA},$
$f = f_{MAX} = 1/t_{RC}$ | 70 ns | | | 15 | mA | | I _{SB1} | Automatic CE Power-Down Current —TTL Inputs | $\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$ | · | | | 2 | mA | | I _{SB2} | Automatic CE Power-Down Current —CMOS Inputs | $\label{eq:max_VCC} \begin{split} & \underbrace{\text{Max. } V_{CC},} \\ & \overline{\text{CE}} \geq V_{CC} - 0.3 \text{V}, \\ & V_{IN} \geq V_{CC} - 0.3 \text{V}, \\ & \text{or } V_{IN} \leq 0.3 \text{V}, \text{ f=0} \end{split}$ | | | 0.5 | 15 | μА | # Capacitance^[4] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|---|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 9 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 3.3V$ | 9 | pF | ## **AC Test Loads and Waveforms** ### Notes: - Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}=3.0V). Parameters are guaranteed by design and characterization, and not 100% tested. - 4. Tested initially and after any design or process changes that may affect these parameters. # Switching Characteristics^[5] Over the Operating Range | | | 62126 | 62126BV-55 | | | | |-------------------|---|-------|------------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | • | • | • | • | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | t _{LZOE} | OE LOW to Low Z ^[7] | 5 | | 5 | | ns | | t _{HZOE} | OE HIGH to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{LZCE} | CE LOW to Low Z ^[7] | 10 | | 10 | | ns | | t _{HZCE} | CE HIGH to High Z ^[6, 7] | | 20 | | 25 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 55 | | 70 | ns | | t _{DBE} | Byte Enable to Data Valid | | 25 | | 35 | ns | | t _{LZBE} | Byte Enable to LOW Z ^[7] | 5 | | 5 | | ns | | t _{HZBE} | Byte Disable to HIGH Z ^[6,7] | | 20 | | 25 | ns | | WRITE CYCL | E [8] | • | • | • | • | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | t _{SCE} | CE LOW to Write End | 45 | | 60 | | ns | | t _{AW} | Address Set-Up to Write End | 45 | | 60 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 40 | | 50 | | ns | | t _{SD} | Data Set-Up to Write End | 25 | | 30 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | t _{LZWE} | WE HIGH to Low Z ^[7] | 5 | | 5 | | ns | | t _{HZWE} | WE LOW to High Z ^[6,7] | | 25 | | 25 | ns | | t _{BW} | Byte Enable to End of Write | 45 | | 60 | | ns | #### Notes: Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. t_{HZOE}, t_{HZOE}, t_{HZWE}, and t_{HZBE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, t_{HZWE} is less than t_{LZWE}, and t_{HZBE} is less than t_{LZBE}, for any given device. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. Refer to truth table for further conditions from BHE and BLE. ## Data Retention Characteristics (Over the Operating Range for "L" and "LL" version only) | Parameter | Description | Conditions ^[9] | Min. | Тур | Max. | Unit | |---------------------------------|--------------------------------------|---|-----------------|-----|------|------| | V_{DR} | V _{CC} for Data Retention | | 2.0 | | 3.6 | V | | I _{CCDR} | Data Retention Current | $V_{CC}=V_{DR}=2.0V$ | | 0.5 | 15 | μΑ | | t _{CDR} ^[4] | Chip Deselect to Data Retention Time | $\overrightarrow{CE} \ge V_{CC} - 0.3V$,
$V_{IN} \ge V_{CC} - 0.3V$ or, | 0 | | | ns | | t _R | Operation Recovery Time | $V_{IN} \leq 0.3V$ | t _{RC} | | | ns | ## **Data Retention Waveform** ## **Switching Waveforms** Read Cycle No.1^[10, 11] # Read Cycle No. 2 (OE Controlled)[11, 12, 13] #### Notes: - 9. No input may exceed V_{CC} + 0.3V. 10. Device is continuously selected. OE, CE, BHE, BLE = V_{IL}. 11. WE is HIGH for read cycle. 12. Address valid prior to or coincident with CE transition LOW. 13. Data I/O is high impedance if OE = V_{IH} or BHE and BLE = V_{IH}. # Switching Waveforms (continued) ## Write Cycle No. 1 (CE Controlled)[13, 14] # Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13,14] - 14. If CE, BHE, or BLE go HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 15. During this period the I/Os are in the output state and input signals should not be applied. # Switching Waveforms (continued) Write Cycle No.3 (WE Controlled, OE LOW)[13, 14] # **Truth Table** | CE | ŌĒ | WE | BLE | BHE | I/O ₁ –I/O ₈ | I/O ₉ -I/O ₁₆ | Mode | Power | |----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------| | Н | Х | Χ | Χ | Х | High Z | High Z | Power Down | Standby (I _{SB}) | | L | L | Н | L | L | Data Out | Data Out | Read All bits | Active (I _{CC}) | | L | L | Н | L | Н | Data Out | High Z | Read Lower bits only | Active (I _{CC}) | | L | L | Н | Н | L | High Z | Data Out | Read Upper bits only | Active (I _{CC}) | | L | Х | L | L | L | Data In | Data In | Write All bits | Active (I _{CC}) | | L | Х | L | L | Н | Data In | High Z | Write Lower bits only | Active (I _{CC}) | | L | Х | L | Н | L | High Z | Data In | Write Upper bits only | Active (I _{CC}) | | L | Н | Н | Х | Х | High Z | High Z | Selected, Outputs Disabled | Active (I _{CC}) | ## **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|-------------------|-----------------|------------------------------------|--------------------| | 55 | CY62126BVLL-55ZI | Z44 | 44-Lead TSOP II | Industrial | | | CY62126BVLL-55BAI | BA48 | 48-ball Fine Pitch Ball Grid Array | 1 | | 70 | CY62126BVLL-70ZI | Z44 | 44-Lead TSOP II | 1 | | | CY62126BVLL-70BAI | BA48 | 48-ball Fine Pitch Ball Grid Array | 1 | Document #: 38-00584-** ## **Package Diagrams** ## 44-Pin TSOP II Z44 DIMENSION IN MM (INCH) MAX MIN. ## Package Diagrams (continued) ## 48-Ball (7.00 mm x 7.00 mm) FBGA BA48