

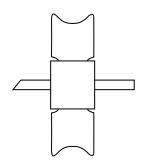
2-8 GHz Medium Power Gallium Arsenide FET

Technical Data

ATF-45171

Features

- High Output Power: $29.0~\mathrm{dBm}\,\mathrm{Typical}\,\mathrm{P}_{1\,\mathrm{dB}}\,\mathrm{at}\,4~\mathrm{GHz}$
- High Gain at 1dB Compression: $10.5\,dB\,Typical\,G_{1\,dB}\,at\,4\,GHz$
- **High Power Efficiency:** 38% Typical at 4 GHz
- Hermetic Metal-Ceramic Stripline Package


Description

The ATF-45171 is a gallium arsenide Schottky-barrier-gate field effect transistor designed for medium power, linear amplification in the 2 to 8 GHz frequency

range. This nominally 0.5 micron gate length GaAs FET is an interdigitated four-cell structure using airbridge interconnects between drain fingers. Total gate periphery is 2.5 millimeters. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

This device is suitable for applications in space, airborne, military ground and shipboard, and commercial environments. It is supplied in a hermetic high reliability package with low parasitic reactance and minimum thermal resistance.

70 mil Flange Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
P _{1 dB}	Power Output @ 1 dB Gain Compression: $V_{DS} = 9 \text{ V}, I_{DS} = 250 \text{ mA}$	$f = 4.0 \mathrm{GHz}$ $f = 8.0 \mathrm{GHz}$	dBm	28.0	29.0 28.0	
$G_{1 dB}$	1 dB Compressed Gain: $V_{DS} = 9 \text{ V}, I_{DS} = 250 \text{mA}$	$f = 4.0 \mathrm{GHz}$ $f = 8.0 \mathrm{GHz}$	dB	9.5	10.5 4.5	
η_{add}	Efficiency @ $P_{1 dB}$: $V_{DS} = 9 V$, $I_{DS} = 250 mA$	f = 4.0 GHz	%		38	
g_{m}	Transconductance: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 250 \text{ mA}$		mmho		200	
I_{DSS}	Saturated Drain Current: $V_{DS} = 1.75 \text{ V}, V_{GS} = 0 \text{ V}$		mA	400	600	800
$V_{\rm P}$	Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 12.5 \text{ mA}$		V	-5.4	-4.0	-2.0

ATF-45171 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{DS}	Drain-Source Voltage	V	+14
V_{GS}	Gate-Source Voltage	V	-7
$V_{ m GD}$	Gate-Drain Voltage	V	-16
I_{DS}	Drain Current	mA	I_{DSS}
P _T	Power Dissipation [2,3]	W	3.6
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 42$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1 μm Spot Size ^[4]

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 24 mW/°C for $T_{CASE} > 24$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-45171 Typical Performance, $T_A = 25^{\circ}C$

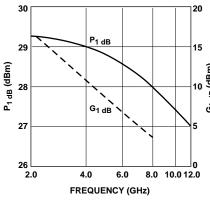
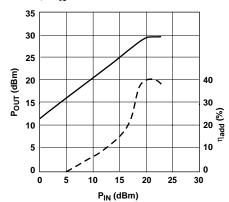
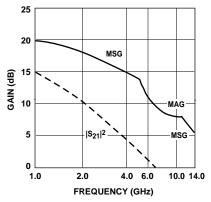
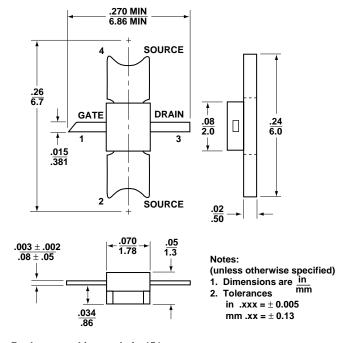




Figure 1. Power Output @ 1 dB Gain Compression and 1 dB Compressed Gain vs. Frequency. $V_{DS} = 9V, \, I_{DS} = 250 \, \text{mA}.$

 $\begin{aligned} & Figure \ 2. \ Output \ Power \ and \ Power \\ & Added \ Efficiency \ vs. \ Input \ Power. \\ & V_{DS} = 9 \ V, \ I_{DS} = 250 \ mA, \ f = 4.0 \ GHz. \end{aligned}$


 $\label{eq:Figure 3. Insertion Power Gain,} Maximum Available Gain and Maximum Stable Gain vs. Frequency. \\ V_{DS} = 9 \ V, I_{DS} = 250 \ mA.$

 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\!C, V_{DS} = 9 \ V, I_{DS} = 250 \ mA$

Freq.	S ₁₁		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
1.0	.91	-83	14.5	5.30	122	-26.7	.046	46	.37	-46
2.0	.83	-137	10.8	3.45	83	-26.4	.048	19	.26	- 91
3.0	.83	-167	7.4	2.34	54	-26.0	.050	5	.31	-131
4.0	.86	174	4.4	1.66	32	-25.5	.053	2	.43	-155
5.0	.86	162	2.1	1.28	12	-25.1	.055	0	.52	-167
6.0	.85	152	0.7	1.09	-3	-24.7	.058	-2	.56	-176
7.0	.84	138	0.1	1.01	-22	-24.4	.060	-6	.59	173
8.0	.84	124	-0.9	.90	-4 0	-23.8	.064	-13	.62	154
9.0	.85	114	-2.5	.75	- 59	-23.4	.068	-19	.66	135
10.0	.85	106	-4.3	.61	-70	-22.5	.075	- 25	.71	123
11.0	.85	100	-5.2	.55	- 81	-21.6	.083	-30	.76	119
12.0	.83	95	-6.2	.49	- 90	-20.8	.091	-39	.79	111
13.0	.80	76	-6.7	.46	-107	-19.3	.109	-50	.81	98
14.0	.77	59	-8.0	.40	-125	-18.9	.113	-61	.83	78

A model for this device is available in the DEVICE MODELS section.

70 mil Flange Package Dimensions

Package marking code is 451