

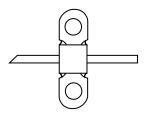
2-8 GHz Medium Power Gallium Arsenide FET

Technical Data

ATF-44101

Features

- High Output Power: $32.0 \text{ dBm Typical P}_{1 \text{ dB}} \text{ at } 4 \text{ GHz}$
- High Gain at 1 dB
 Compression:
 8.5 dB Typical G_{1 dB} at 4 GHz
- **High Power Efficiency:** 35% Typical at 4 GHz
- Hermetic Metal-Ceramic Stripline Package


Description

The ATF-44101 is a gallium arsenide Schottky-barrier-gate field effect transistor designed for medium power, linear amplification in the 2 to 8 GHz frequency

range. This nominally .5 micron gate length GaAs FET is an interdigitated four-cell structure using airbridge interconnects between source fingers. Total gate periphery is 5 millimeters. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

This device is suitable for applications in space, airborne, military ground and shipboard, and commercial environments. It is supplied in a hermetic high reliability package with low parasitic reactance and minimum thermal resistance.

100 mil Flange

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.	
P _{1 dB}	Power Output @ 1 dB Gain Compression:	f = 4.0 GHz	dBm	31.0	32.0	
	$V_{DS} = 9 \text{ V}, I_{DS} = 500 \text{ mA}$	$f = 6.0 \mathrm{GHz}$			31.5	
$G_{1\mathrm{dB}}$	1 dB Compressed Gain: $V_{DS} = 9 \text{ V}$, $I_{DS} = 500 \text{ mA}$	f = 4.0 GHz	dB	7.5	8.5	
		$f = 6.0 \mathrm{GHz}$			5.5	
η_{add}	Efficiency @ P_{1dB} : $V_{DS} = 9 \text{ V}$, $I_{DS} = 500 \text{ mA}$	f = 4.0 GHz	%		35	
g _m	Transconductance: $V_{DS} = 2.5 \text{ V}, I_{DS} = 500 \text{ mA}$		mmho		300	
I_{DSS}	Saturated Drain Current: $V_{DS} = 1.75 \text{ V}, V_{GS} = 0 \text{ V}$		mA	800	1300	1500
V_{P}	Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}, I_{DS} = 25 \text{ mA}$		V	-5.4	-4.0	-2.0

5-89

ATF-44101 Absolute Maximum Ratings

			Absolute
Symbol	Parameter	Units	Maximum ^[1]
$V_{ m DS}$	Drain-Source Voltage	V	+14
V_{GS}	Gate-Source Voltage	V	-7
$V_{ m GD}$	Gate-Drain Voltage	V	-16
I_{DS}	Drain Current	mA	I_{DSS}
P_{T}	Power Dissipation [2,3]	W	6.5
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 23$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1 μmSpotSize ^[4]

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 43 mW/°C for $T_{\rm CASE} > 25\,^{\circ}{\rm C}.$
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-44101 Typical Performance, $T_A = 25^{\circ}C$

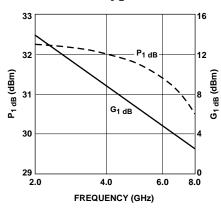


Figure 1. Power Output @ 1 dB Gain Compression and 1 dB Compressed Gain vs. Frequency. $V_{DS}=9V,\,I_{DS}=500\;\text{mA}.$

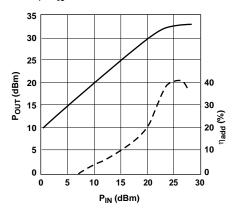
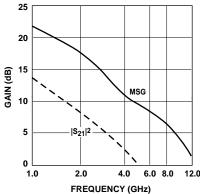
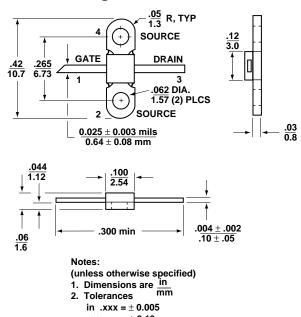


Figure 2. Output Power and Power Added Efficiency vs. Input Power. $V_{DS} = 9 \text{ V}, I_{DS} = 500 \text{ mA}, f = 4 \text{ GHz}.$




Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=9\ V,\ I_{DS}=500\ mA.$

 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\text{C}, V_{DS} = 9 \ V, I_{DS} = 500 \ \text{mA}$

Freq.	S_{11}		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
1.0	.88	-125	13.4	4.69	104	-28.2	.039	31	.29	-154
2.0	.87	-161	8.1	2.53	74	-26.7	.046	21	.38	-164
3.0	.87	-178	4.8	1.73	54	-26.7	.046	22	.44	-167
4.0	.87	168	2.5	1.34	35	-25.7	.052	17	.47	-175
5.0	.88	153	0.8	1.10	16	-25.5	.053	13	.49	175
6.0	.88	136	-0.8	.91	-5	-23.6	.066	0	.52	160
7.0	.89	122	-2.5	.75	- 25	-23.4	.068	-7	.56	144
8.0	.89	114	-4.2	.62	-39	-22.7	.073	-13	.62	132
9.0	.88	109	-5.5	.53	- 52	-22.2	.078	-18	.68	124
10.0	.86	103	-6.7	.46	- 64	-20.9	.090	- 24	.72	118
11.0	.81	91	-6.9	.45	-78	-19.3	.108	-33	.73	112
12.0	.77	74	-7.5	.42	- 95	-17.2	.138	-4 9	.73	101

A model for this device is available in the DEVICE MODELS section.

100 mil Flange Dimensions

Package marking code is 441

mm .xx = \pm 0.13