

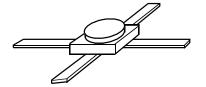
0.5-10 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-25170

Features

- Low Noise Figure: 0.8 dB Typical at 4 GHz
- **High Associated Gain:** 14.0 dB Typical at 4 GHz
- **High Output Power:** 21.0 dBm Typical P _{1 dB} at 4 GHz
- Hermetic Gold-Ceramic Microstrip Package


Description

The ATF-25170 is a high performance gallium arsenide Schottky-barrier-gate field effect transistor

housed in a hermetic, high reliability package. Its noise figure makes this device appropriate for use in low noise amplifiers operating in the 0.5-10 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

70 mil Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF _O	Optimum Noise Figure: $V_{DS} = 3 \text{ V}$, $I_{DS} = 20 \text{ mA}$	$f = 4.0 \mathrm{GHz}$ $f = 6.0 \mathrm{GHz}$ $f = 8.0 \mathrm{GHz}$	dB dB dB		0.8 1.0 1.2	1.0
G_{A}	$Gain @ NF_O: V_{DS} = 3 V, I_{DS} = 20 \text{ mA}$	$\begin{array}{l} f = 4.0\mathrm{GHz} \\ f = 6.0\mathrm{GHz} \\ f = 8.0\mathrm{GHz} \end{array}$	dB dB dB	13.0	14.0 11.5 9.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression: V _{DS} =5 V, I _{DS} =50 mA	f = 4.0 GHz	dBm		21.0	
$G_{1 dB}$	$1~\mathrm{dB}$ Compressed Gain: $\mathrm{V_{DS}}$ =5 V, $\mathrm{I_{DS}}$ =50 mA	f = 4.0 GHz	dB		15.0	
\mathbf{g}_{m}	Transconductance: $V_{DS} = 3 V$, $V_{GS} = 0 V$		mmho	50	80	
I_{DSS}	Saturated Drain Current: $V_{DS} = 3 V$, $V_{GS} = 0 V$		mA	50	100	150
$V_{\rm P}$	Pinch-off Voltage: $V_{DS} = 3 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-3.0	-2.0	-0.8

ATF-25170 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{DS}	Drain-Source Voltage	V	+7
V_{GS}	Gate-Source Voltage	V	-4
$V_{ m GD}$	Gate-Drain Voltage	V	-8
I_{DS}	Drain Current	mA	I_{DSS}
P_{T}	Power Dissipation [2,3]	mW	450
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 300$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1 μm Spot Size ^[4]

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{MOUNTING SURFACE} = 25$ °C.
- 3. Derate at 3.3 mW/°C for T_{MOUNTING SURFACE} > 40°C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-25170 Noise Parameters: $V_{DS} = 3 \text{ V}$, $I_{DS} = 20 \text{ mA}$

Freq.	NFo	Γ	$R_{N}/50$		
GHz	dB	Mag	Ang	1t _N /30	
1.0	0.6	.89	24	.78	
2.0	0.7	.77	50	.53	
4.0	0.8	.63	105	.33	
6.0	1.0	.66	147	.06	
8.0	1.2	.62	-159	.11	

ATF-25170 Typical Performance, $T_A = 25$ °C

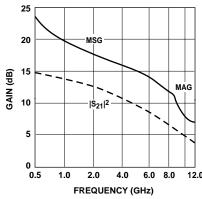


Figure 1. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $\rm V_{DS}=3~V,~I_{DS}=20~mA.$

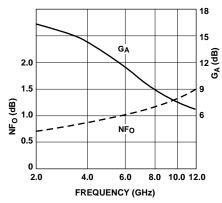
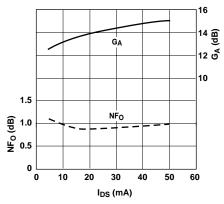
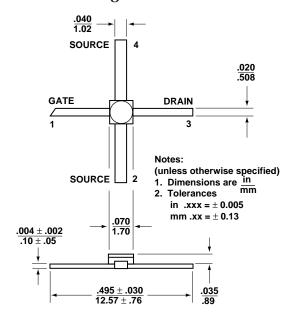



Figure 2. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS}=3V,\,I_{DS}=20$ mA.


 $\label{eq:Figure 3.0} Figure \ 3. Optimum \ Noise \ Figure \ and \\ Associated \ Gain \ vs. \ I_{DS}. \\ V_{DS} = 3V, \ f = 4.0 \ GHz.$

 $\textbf{Typical Scattering Parameters,} \ \text{Common Emitter,} \ Z_{O} = 50 \ \Omega, T_{A} = 25 ^{\circ}\text{C}, V_{DS} = 3 \ V, I_{DS} = 20 \ \text{mA}$

Freq.	\mathbf{S}_{11}		$\mathbf{S_{21}}$		\mathbf{S}_{12}			$\mathbf{S_{22}}$		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-23	13.6	4.80	160	-32.8	.023	76	.50	-23
1.0	.96	-38	13.0	4.46	147	-23.6	.037	67	.48	-30
2.0	.88	-66	11.5	3.75	121	-23.6	.066	50	.44	- 45
3.0	.80	-86	10.2	3.23	102	-21.8	.081	41	.41	-55
4.0	.77	-106	9.3	2.93	82	-19.7	.103	28	.38	-65
5.0	.71	-127	8.5	2.66	62	-18.6	.118	17	.35	-78
6.0	.65	-149	7.9	2.47	42	-17.7	.130	6	.30	- 93
7.0	.60	-173	7.3	2.33	24	-16.5	.149	- 4	.26	-111
8.0	.56	161	6.8	2.20	5	-15.8	.162	-16	.22	-134
9.0	.56	136	6.2	2.05	-14	-15.1	.175	-26	.21	-166
10.0	.55	118	5.4	1.87	- 31	-15.0	.178	- 35	.21	173
11.0	.53	108	4.9	1.76	-46	-14.9	.180	- 42	.22	164
12.0	.53	95	4.7	1.71	-62	-14.8	.183	-52	.23	159

A model for this device is available in the DEVICE MODELS section.

70 mil Package Dimensions

