NJM2119

DUAL SINGLE-SUPPLY OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

PACKAGE OUTLINE

NJM 2119 is a ultra-low input offset voltage and bias current, low drift and single supply dual operational amplifier. NJM2119 is suitable for a high accurated instrumental amplifier and sensor amplifier.

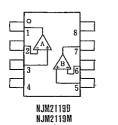
 $(+4V \sim +36V)$

(90 µV Typ.)

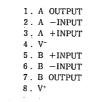
(18nA Typ.)

.DIP8, DMP8

(4.0 µV/℃ Typ.)


FEATURES

JRC


- Single Supply •
- Operating Voltage
- Low Input Offset Voltage •
- Low Input Bias Current •
- Low Input Offset Voltage Drift
- Package Outline .
- Bipolar Technology

PIN CONFIGURATION

PIN FUNCTION

4-124

NJM2119D

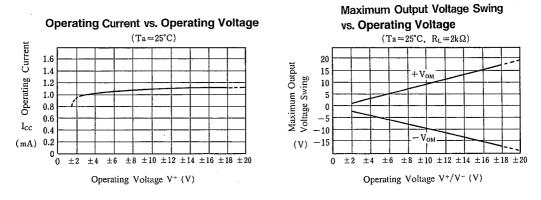
NJM2119M

(Ta=25℃)

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT		
Supply Voltage	V*(V*/V~)	36(±18)	v		
Differential Input Voltage	V _{ID}	-0.3~+36	v		
Input Voltage	V _{IC}	+36 (note)	v		
Power Dissipation	PD	(DIP8) 700	mW		
		(DMP8) 300	mW		
Operating Temperature Range	Topr	-30~+85	Ĵ		
Storage Temperature Range	Tstg	-40~+125	Ĵ		

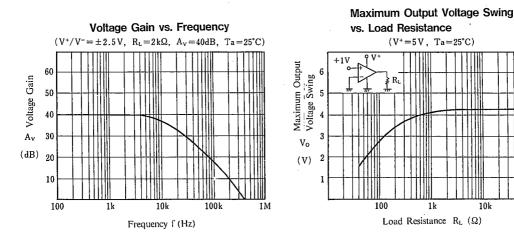
(note) For supply voltage less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.


ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	ΤΥΡ.	MAX.	UNIT
Input Offset Voltage	Vio	$R_{S} \leq 50\Omega$	_	90	450	μV
Vio Drift	ΔV10/ΔΤ	Ta=-30~+85℃	—	4.0	_	μV/℃
Input Offset Current	lio			0.3	7.0	nA
Input Bias Current	IB		i —	18	50	nA
Operating Current	Icc	$R_{L} = \infty$		1.0	1.5	mA
Input Common Mode Voltage Range	VICM		0~3.5	—	—	v
Common Mode Rejection Ratio	CMR		85	100	—	dB
Supply Voltage Rejection Ratio	SVR		85	100	-	dB
Large Signal Voltage Gain	Av	$R_L = 600\Omega$	90	105	_	dB
Maximum Output Voltage Swing 1	+Vomi	$R_L = 600\Omega$	3.4	4.0		v
Maximum Output Voltage Swing 1	-Vомі	$R_L = 600\Omega$	_	5.0	10.0	mV
Maximum Output Voltage Swing 2	-Vom2	I _{SINK} =1mA	—	220	350	mV
Slew Rate	SR	Av=I	-	0.3	—	V/µs
Gain Bandwidth Product	GB		-	1.0	-	MHz

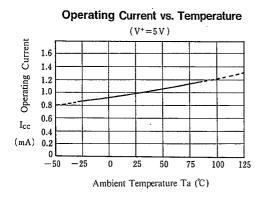
 $(V^{+}=5.0V, Ta=25\pm2^{\circ}C)$

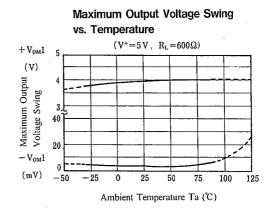
NJM2119


TYPICAL CHARACTERISTICS

Output Source Current $(V^+=5V, Ta=25^{\circ}C)$ (V) Output Source Current Isource (mA)

Output Sink Current $(V^+ = 5V, T_a = 25^{\circ}C)$ Output Voltage Vo (V) Output Sink Current ISINK (mA)


100k



-New Japan Radio Co., Ltd.

NJM2119

TYPICAL CHARACTERISTICS

Input Offset Voltage vs. Temperature $(V^+ = 5V)$ of Input Offset Voltage 200 100 0 -100 (μV) - 200 -50-250 25 50 75 100 125 Ambient Temperature Ta (°C)

-New Japan Radio Co.,Ltd.-

Input BiasCurrent vs. Temperature $(V^+ = 5V)$ 40 #1 Input Bias Current 30 20 10 (nA) 0 -50 -25 0 25 50 75 100 125 Ambient Temperature Ta (°C)

-4-127

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.