

MOS INTEGRATED CIRCUIT μ PD16833A

MONOLITHIC QUAD H BRIDGE DRIVER CIRCUIT

DESCRIPTION

The μ PD16833A is a monolithic quad H bridge driver IC which uses power MOS FETs in its driver stage. By using the MOS FETs in the output stage, this driver IC has a substantially improved saturation voltage and power consumption as compared with conventional driver circuits using bipolar transistors.

A low-voltage malfunction prevention function is provided to prevent the IC from malfunctioning when the supply voltage drops. By eliminating the charge pump circuit, the current during power-OFF is drastically decreased.

As the package, a 30-pin plastic shrink SOP is employed to enable the creation of compact, slim application sets.

This driver IC can drive two stepping motors at the same time, and is ideal for driving stepping motors in the lens of a video camera.

FEATURES

- Four H bridge circuits employing power MOS FETs
- Low current consumption by eliminating charge pump
 VM pin current when power-OFF: 10 (A MAX) Vpp pin current

V_M pin current when power-OFF: 10 μ A MAX. V_{DD} pin current: 10 μ A MAX.

- Input logic frequency: 100 kHz
- 3-V power supply

Minimum operating supply voltage: 2.5 V

- Low-voltage malfunctioning prevention circuit
- 30-pin plastic shrink SOP (300 mil) (μPD16833AG3)

ORDERING INFORMATION

Part Number	Package
μPD16833AG3	30-pin plastic shrink SOP (300 mil)

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +6.0	V
	VM		-0.5 to +6.0	V
Input voltage	Vin		-0.5 to V _{DD} + 0.5	V
H bridge drive currentNote 1	IDR (DC)	DC	±300	mA
Instantaneous H bridge drive currentNote 1	IDR (pulse)	PW ≤ 10 ms, Duty ≤ 5 %	±700	mA
Power dissipationNote 2	Рт		1.19	W
Peak junction temperature	Тсн (мах)		150	°C
Storage temperature range	T _{stg}		-55 to +150	°C

Notes 1. Permissible current per phase, when mounted on a printed circuit board

2. When mounted on a glass epoxy board (10 cm \times 10 cm \times 1 mm)

The information in this document is subject to change without notice.

Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD}	2.5		5.5	V
	VM	2.7		5.5	V
H bridge drive current	Idr	-200		200	mA
Logic input frequency Note	fin			100	kHz
Operating temperature range	TA	-10		85	°C
Peak junction temperature	Тсн (мах)			125	°C

Note Common to IN and EN pins

DC Characteristics (Unless otherwise specified, $V_{DD} = V_{M} = 3.0 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
OFF V _M pin current	Im (OFF)	with all control pins at low level			10	μΑ
V _{DD} pin current	IDD	with all control pins at low level			10	μΑ
High-level input current	Іін	VIN =VDD			0.06	mA
Low-level input current	lıL	Vin = 0	-1.0			μΑ
Input pull-down resistor	RIND		50		200	kΩ
High-level input voltage	VIH	V _{DD} = 2.5 V to 5.5 V	$V_{DD} \times 0.7$		V _{DD} + 0.3	V
Low-level input voltage	VIL	V _{DD} = 2.5 V to 5.5 V	-0.3		$V_{DD} \times 0.3$	V
H bridge ON resistance ^{Note}	Ron	V _{DD} = V _M = 2.7 V to 5.5 V			3.0	Ω
Low-voltage malfunction prevention circuit operating voltage	V _{DDS1}	V _M = 5.0 V -10 °C ≤ T _A ≤ +85 °C	0.8		2.5	V
	V _{DDS2}	V _M = 3.0 V −10 °C ≤ T _A ≤+85 °C	0.65		2.5	V

Note Sum of top and bottom ON resistances (@IDR = 100 mA)

AC Characteristics (Unless otherwise specified, V_{DD} = V_{M} = 3.0 V_{c} T_{A} = 25 $^{\circ}C$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
H bridge output circuit turn-ON	tonh	$R_M = 20 \Omega$, Figure 1		0.7	20	μΑ
time						
H bridge output circuit turn-OFF	toffh			0.2	0.5	μΑ
time						
Rise time	tr		0.1	0.4	1.0	μs
Fall time	t f			70	200	ns

FUNCTION TABLE

Channel 1

Onami i			
EN ₁	IN ₁	OUT1A	OUT1B
Н	L	Н	L
Н	Н	L	Н
L	L	Z	Z
L	Н	Z	Z

Channel 3

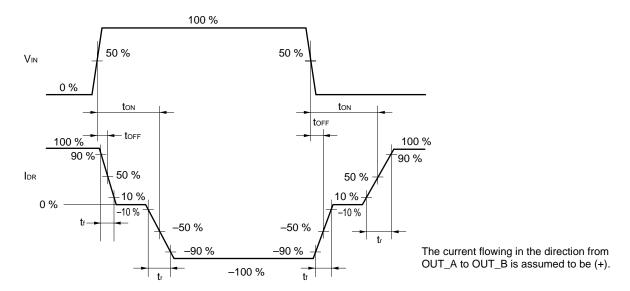
EN₃	INз	OUT3A	OUT3B
Н	L	Н	L
Н	Н	L	Н
L	L	Z	Z
L	Н	Z	Z

H: High level, L: Low level, Z: High impedance IN

Channel 2

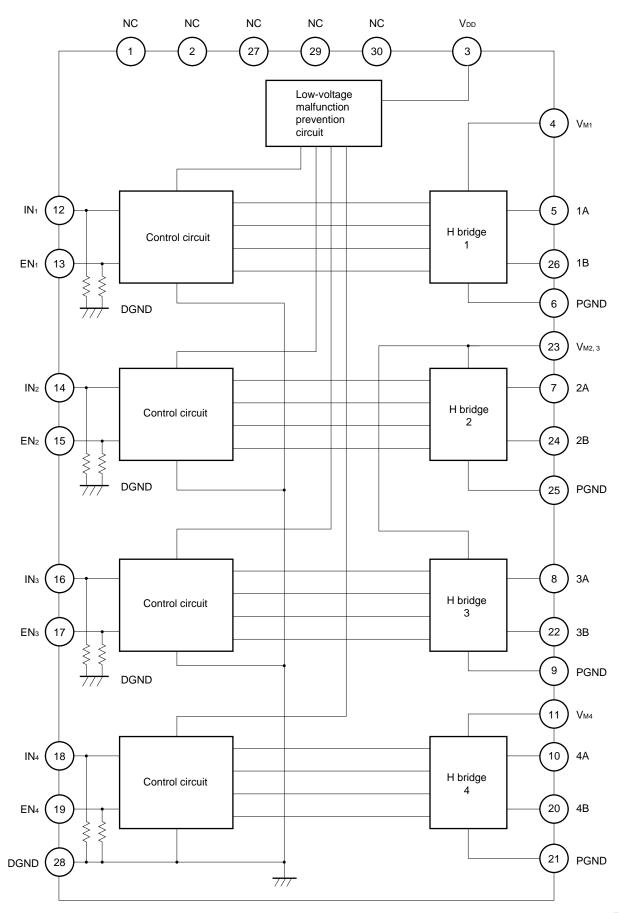
EN ₂	IN ₂	OUT2A	OUT2B
Н	L	Н	L
Н	Н	L	Н
L	L	Z	Z
L	Н	Z	Z

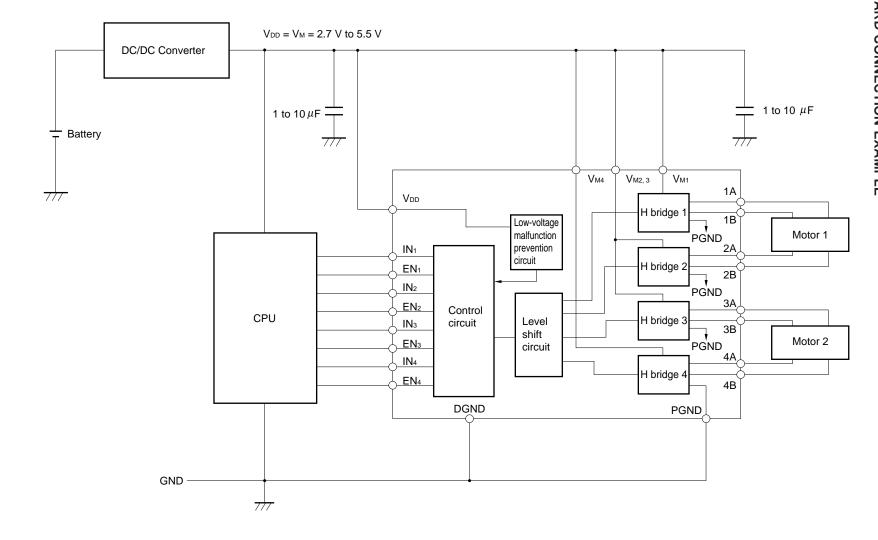
Channel 4

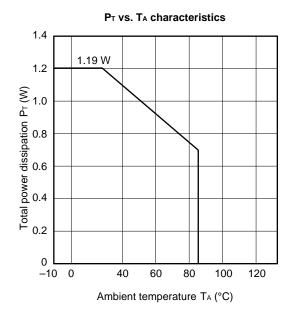

EN ₄	IN ₄	OUT4A	OUT4B
Н	L	Н	L
Н	Н	L	Н
L	L	Z	Z
L	Н	Z	Z

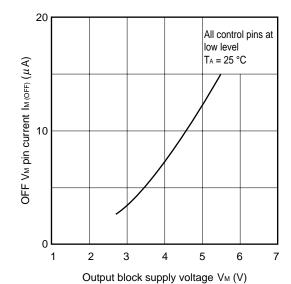
PIN CONFIGURATION

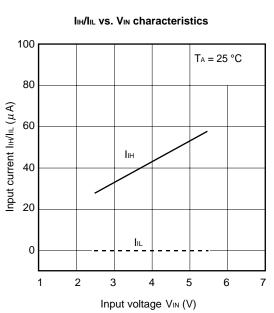
NC	1	30	NC
NC	2	29	NC
V_{DD}	3	28	DGND
V_{M1}	4	27	NC
1A	5	26	1B
PGND	6	25	PGND
2A	7	24	2B
ЗА	8	23	V _{M2, 3}
PGND	9	22	3B
4A	10	21	PGND
V_{M4}	11	20	4B
IN ₁	12	19	EN ₄
EN ₁	13	18	IN ₄
IN ₂	14	17	EN₃
EN_2	15	16	INз

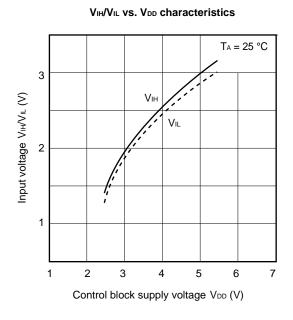



Figure 1. Switching Characteristic Wave

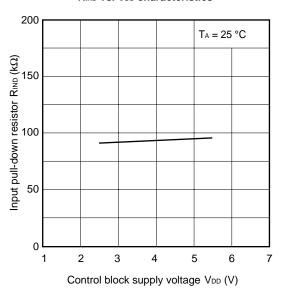

BLOCK DIAGRAM

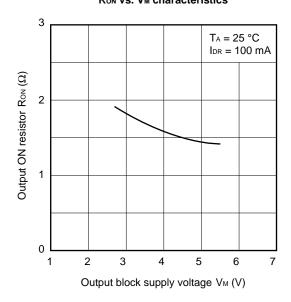


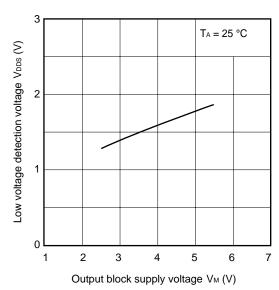


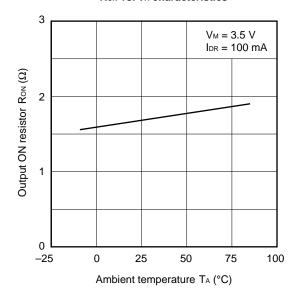

TYPICAL CHARACTERISTICS (TA = 25 °C)

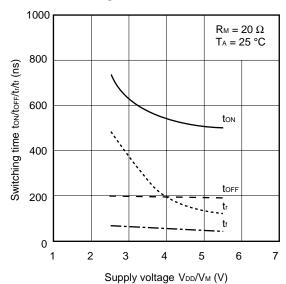


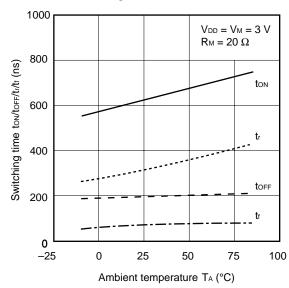

Im (OFF) vs. Vm characteristics



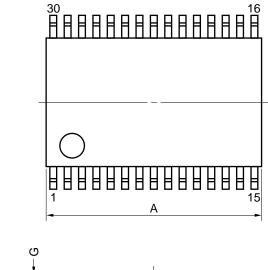


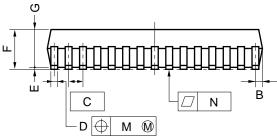

Ron vs. V_M characteristics


V_{DDS} vs. V_M characteristics

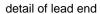

Ron vs. Ta characteristics

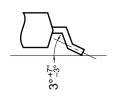
Switching time vs. VDD/VM characteristics

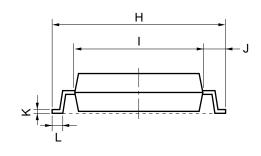

Switching time vs. TA characteristics



PACKAGE DIMENSION


30 PIN PLASTIC SHRINK SOP (300 mil)





NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

P30GS-65-300B-1

ITEM	MILLIMETERS	INCHES
Α	10.11 MAX.	0.398 MAX.
В	0.51 MAX.	0.020 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	$0.30^{+0.10}_{-0.05}$	$0.012^{+0.004}_{-0.003}$
E	0.125±0.075	0.005±0.003
F	2.0 MAX.	0.079 MAX.
G	1.7±0.1	0.067±0.004
Н	8.1±0.2	0.319±0.008
I	6.1±0.2	0.240±0.008
J	1.0±0.2	$0.039^{+0.009}_{-0.008}$
K	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.002}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	0.10	0.004
N	0.10	0.004

RECOMMENDED SOLDERING CONDITIONS

It is recommended to solder this product under the conditions described below.

For soldering methods and conditions other than those listed below, consult NEC.

For the details of the recommended soldering conditions of this type, refer to the **Semiconductor Device Mounting Technology Manual (C10535E)**.

Soldering Method	Soldering Conditions	Symbol of Recommended Soldering
Infrared reflow	Peak package temperature: 235 °C, Time: 30 seconds MAX. (210 °C MIN.), Number of times: 3 MAX., Number of days: None ^{Note} , Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% MAX.) is recommended.	IR35-00-3
VPS	Peak package temperature: 215 °C, Time: 40 seconds MAX. (200 °C MIN.), (200 °C MIN.), Number of times: 2 MAX., Number of days: None ^{Note} , Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% MAX.) is recommended.	VP15-00-2
Wave soldering	Soldering bath temperature: 260 °C MAX., Time: 10 seconds MAX., Preheating temperature: 120 °C MAX., Number of times: 1, Flux: Rosin-based flux with little chlorine content (chlorine: 0.2 Wt% MAX.) is recommended.	WS60-00-1

Note The number of storage days at 25 $^{\circ}$ C, 65% RH after the dry pack has been opened

Caution Do not use two or more soldering methods in combination.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5