PDIC for CD-ROM/DVD-ROM

Description

CXA2586M is a PDIC (photodetector IC) developed as a photodetector for the optical pickup of CD-ROM/DVD-ROM.
The photodiode and circuit blocks operate at high speed. (Typ. 100MHz)

- Focus servo : astigmatic method
- Tracking servo (CD)
: three-spot method
- Tracking servo (DVD)
: differential phase detection method

Features

- High-speed I-V amplifier (current-voltage conversion circuit)
- High-speed photodiode
- Adding amplifier (addition of A to D)
- Compact transparent molded package (SOP)

Applications

Optical pickup for CD-ROM/DVD-ROM

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage	Vcc	5.5	V
- Operating temperature	Topr	-10 to +70	${ }^{\circ} \mathrm{C}$
- Storage temperature	Tstg	-40 to +100	${ }^{\circ} \mathrm{C}$
- Allowable power dissipation			
	PD	300	mW

Operating Conditions

$\begin{array}{llcc}\text { - Supply voltage } 1 & \text { Vcc } & 4.5 \text { to } 5.5 & \mathrm{~V} \\ \text { - Supply voltage2 } & \text { Vc } & 1.5 \text { to } \mathrm{Vcc}-1.5 & \mathrm{~V}\end{array}$

Structure

Bipolar silicon monolithic IC

Block Diagram and Pin Configuration

* The components marked by A, B, C, D, E and F are the photodiodes (photo sensitivity. About 0.4A/W @650nm, 780nm) any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Pin No.	Symbol	I/O	Equivalent circuit	Description
$\begin{aligned} & 2 \\ & 4 \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Ao } \\ & \text { Bo } \\ & \text { Co } \\ & \text { Do } \end{aligned}$	O		Output of voltage signals converted from optical signals
$\begin{gathered} 6 \\ 10 \end{gathered}$	$\begin{aligned} & \text { Eo } \\ & \text { Fo } \end{aligned}$	O		Output of voltage signals converted from optical signals
3	RF	O		Output of addition of Ao to Do
7	GND	1		For dual power supply : negative power supply For a single power supply : GND
8	Vc	1		For dual power supply : GND For a single power supply : center voltage input
9	Vcc	1		Positive power supply

Electrical and Optical Characteristics
($\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Vc}=2.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Conditions	Min.	Typ.	Max.	Unit
Current consumption	Icc	In the dark	-	15	20	mA
Output offset voltage (A to D)	Voff	In the dark, Vc reference	-25	0	25	mV
Output offset voltage (E, F)	Voff	In the dark, Vc reference	-15	0	15	mV
Output offset voltage (RF)	Voff	In the dark, GND reference	1.25	1.4	1.55	V
Output voltage difference	Δ Voff	A-B, in the dark	-20	0	20	mV
		C-D, in the dark	-20	0	20	mV
		$(\mathrm{A}+\mathrm{C})-(\mathrm{B}+\mathrm{D})$, in the dark	-20	0	20	mV
		$\mathrm{E}-\mathrm{F}$, in the dark	-15	0	15	mV
Sum of output offset voltages	Voffs	A+B+C+D, in the dark	-100	0	100	mV
Output voltage (A to D)	Vo	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=10 \mu \mathrm{~W}$	180	246	312	mV
Output voltage (E, F)	Vo	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=10 \mu \mathrm{~W}$	312	447	581	mV
Output voltage (RF)	Vo	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=10 \mu \mathrm{~W}$	302	432	561	mV
Output voltage ratio (E, F/A to D)	Vor	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=10 \mu \mathrm{~W}$	1.71	1.81	1.90	-
Output voltage ratio (RF/A to D)	Vor	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=10 \mu \mathrm{~W}$	1.67	1.76	1.84	-
Maximum output voltage (A to D)	Vo	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=100 \mu \mathrm{~W}$	3.8	4.0	-	V
Maximum output voltage (E, F)	Vo	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=100 \mu \mathrm{~W}$	3.8	4.0	-	V
Maximum output voltage (RF)	Vo	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}, \mathrm{Po}=100 \mu \mathrm{~W}$	3.8	4.0	-	V
Frequency response (A to D)	fc	$\begin{aligned} & \lambda=650 \mathrm{~nm}, 780 \mathrm{~nm} \\ & \text { Po }=10 \mu \mathrm{Woc}, 4 \mu \mathrm{Wp}-\mathrm{p} \\ & 100 \mathrm{kHz} \text { reference, }-3 \mathrm{~dB} \end{aligned}$	70	100	-	MHz
Frequency response (E, F)	fc	$\begin{array}{\|l} \lambda=650 \mathrm{~nm}, 780 \mathrm{~nm} \\ \text { Po }=10 \mu \mathrm{Woc}, 4 \mu \mathrm{Wp}-\mathrm{p} \\ 100 \mathrm{kHz} \text { reference, }-3 \mathrm{~dB} \\ \hline \end{array}$	1	5	-	MHz
Frequency response (RF)	fc	$\lambda=650 \mathrm{~nm}, 780 \mathrm{~nm}$ Po $=10 \mu \mathrm{Wdc}, 4 \mu \mathrm{Wp}$-p 100 kHz reference, -3 dB	80	105	-	MHz
Group delay difference (A to D)	$\Delta \mathrm{Gd}$	100 kHz to 50 MHz	-	1	5	ns
Group delay difference (RF)	$\Delta \mathrm{Gd}$	100 kHz to 50 MHz	-	1	5	ns
Output noise level (A to D)	Vn	$\mathrm{f}=50 \mathrm{MHz}, \mathrm{RBW}=30 \mathrm{kHz}$	-	-87	-82	dBm
Output noise level (RF)	Vn	$\mathrm{f}=50 \mathrm{MHz}, \mathrm{RBW}=30 \mathrm{kHz}$	-	-76	-71	dBm

Note 1) Output offset voltage: Vc is the reference for A to F, GND for RF.
Note 2) Output voltage: Vc is the reference for A to F, GND for RF. However, the offset voltage is excluded.
Note 3) Output voltage, frequency response, group delay, output noise level: Confirmation of design.
Note 4) Measurement by the optical input: Measurement is made by emitting the light to the center of each photodiode.
In regard of the frequency response of A to D and RF, the same response can be obtained by emitting the light to the A to D photodiodes evenly.

Measurement Circuit

* All loads are $10 \mathrm{k} \Omega / / 10 \mathrm{pF}$. For RF, the DC current is cut by $1 \mu \mathrm{~F}$.

Reference Surface and Photodetector Position

Note) The sink depth of the mirror surface (0.03 ± 0.02) is not included.
Deviation from the center of photodetector

$$
\begin{aligned}
X, Y & : \pm 0.2 \\
\theta & : \pm 2^{\circ}
\end{aligned}
$$

(Unit : mm)

Photodetector Pattern Dimensions

(Unit : $\mu \mathrm{m}$)

Example of Representative Characteristics

RF amplifier frequency response

E and F IV amplifier frequency response

Note on Operation

1. Power supply

The CXA2586M can be used with a single power supply or dual power supply. However, this IC is not provided with a center voltage generating circuit, and so when used with a single power supply the center voltage must be supplied from the RF amplifier or some other device.
The connection of the power supply for each case is as shown.

	(9) Vcc	(8) Vc	(7) GND
Dual power supply	Positive power supply	GND	Negative power supply
Single power supply	Positive power supply	Center voltage	GND

The potential difference between the Vcc pin and GND should be in the range of 4.5 to 5.5 V in both of a single power supply and dual power supply.

2. Soldering

The reflow soldering is not guaranteed for the CXA2586M.

3. Mechanical strength for package

The mechanical strength for the package is not guaranteed for the CXA2586M.
Do not employ the mounting method which gives much weight to the package.
4. Visual inspection standard

Separate specifications and limit samples must be exchanged regarding visual inspection standards for the photodetector.

5. Bypass capacitor

The $0.1 \mu \mathrm{~F}$ capacitor is connected between the Vcc and Vc pins, and the Vc and GND pins respectively to lower the power supply line impedance.
Take the FPC (flexible printed circuit) pattern and the like into consideration so that the bypass capacitor is located close to the PDIC.

Package Outline Unit: mm
PD-S-19-B

SONY CODE	PD-S-19-B
EIAJ CODE	-
JEDEC CODE	-

