

74LVT16646A 3.3V ABT 16-bit bus transceiver (3-State)

FEATURES

- 16-bit universal bus interface
- 3-State buffers
- Output capability: +64mA/-32mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- No bus current loading when output is tied to 5 V bus
- Power-up reset
- Power-up 3-State
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The 74LVT16646A is a high-performance BiCMOS product designed for V_{Cc} operation at 3.3 V .
This device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable (OE) input for easy cascading and a Direction (DIR) input for direction control.

Data on the A or B bus is clocked into the registers on the Low to High transition of the appropriate clock (CPAB or CPBA). The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode data).

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	TYPICAL	UNIT
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nAx to nBx or nBx to nAx	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	1.9	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or 3.0 V	3	pF
$\mathrm{Cl}_{1 / \mathrm{O}}$	I/O pin capacitance	Outputs disabled; $\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ or 3.0 V	9	pF
$\mathrm{I}_{\mathrm{CCZ}}$	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	70	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT166646A DL	VT16646A DL	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 LVT16646A DGG	VT16646A DGG	SOT364-1

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

LOGIC SYMBOL

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 55, 27, 30	1 CPAB, 1CPBA, 2CPAB, 2CPBA	Clock input A to $\mathrm{B} / \mathrm{Clock}$ input B to A
3, 54, 26, 31	1SAB, 1SBA, 2SAB, 2SBA	Select input A to $\mathrm{B} /$ Select input B to A
1,28	1DIR, 2DIR	Direction control inputs
$\begin{gathered} 5,6,8,9,10,12,13,14 \\ 15,16,17,19,20,21,23,24 \end{gathered}$	$\begin{aligned} & \text { 1AO-1A7, } \\ & 2 A 0-2 A 7 \end{aligned}$	Data inputs/outputs (A side)
$\begin{aligned} & 52,51,49,48,47,45,44,43 \\ & 42,41,40,38,37,36,34,33 \end{aligned}$	$\begin{aligned} & 1 \mathrm{BO}-1 \mathrm{B7}, \\ & 2 \mathrm{BO}-2 \mathrm{~B} 7 \end{aligned}$	Data inputs/outputs (B side)
56, 29	1可, 2 $\overline{O E}$	Output enable inputs
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V_{CC}	Positive supply voltage

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 74LVT16646A.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE
nరE	nDIR	nCPAB	nCPBA	nSAB	nSBA	nAx	nBx	
X	X	\uparrow	X	X	X	Input	Unspecified output*	Store A, B unspecified
X	X	X	\uparrow	X	X	Unspecified output*	Input	Store B, A unspecified
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \uparrow \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{gathered} \uparrow \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & \hline X \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	Input	Input	Store A and B data Isolation, hold storage
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\stackrel{L}{L}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\stackrel{X}{\mathrm{H} \text { or L }}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real time B data to A bus Stored B data to A bus
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or L } \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Output	Real time A data to B bus Stored A data to B bus

[^0]
ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +4.6	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{l}}<0$	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-0.5 to +7.0	V
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or High state	-0.5 to +7.0	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in Low state	128	mA
	Storage temperature range	Output in High state	-64	
			-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN	MAX	
V_{CC}	DC supply voltage	2.7	3.6	V
V_{1}	Input voltage	0	5.5	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{V}_{\text {IL }}$	Input voltage		0.8	V
IOH	High-level output current		-32	mA
lob	Low-level output current		32	mA
	Low-level output current; current duty cycle $\leq 50 \%$; $\mathrm{f} \geq 1 \mathrm{kHz}$		64	
$\Delta t / \Delta v$	Input transition rise or fall rate; Outputs enabled		10	ns/V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS			LIMITS		UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-0.85	-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.7$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}		V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$		2.4	2.5		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		2.0	2.3		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$. 07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$. 03	0.5	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.25	0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$			0.4	0.55	
$\mathrm{V}_{\text {RST }}$	Power-up output low voltage ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}				0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$	Control pins		0.1	± 1	
		$\mathrm{V}_{\mathrm{CC}}=0 \text { or } 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$	I/O Data pins ${ }^{4}$		0.1	20	
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$			0.5	10	
		$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0$			0.1	-5	
IOFF	Output off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V			0.1	± 100	$\mu \mathrm{A}$
Imold	Bus Hold current A or B outputs ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$		75	130		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75	-140		
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		± 500			
$l_{\text {EX }}$	Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$			50	125	$\mu \mathrm{A}$
IPU/PD	Power up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$			35	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I} \mathrm{O}=0$			0.07	0.12	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$			4.9	6	
ICCz		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0^{6}$			0.07	0.12	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ; One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND			0.1	0.2	mA

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than $\mathrm{V}_{C C}$ or GND.
3. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a. transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{CC} or GND .
5. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
6. $I_{C C Z}$ is measured with outputs pulled to $\mathrm{V}_{C C}$ or GND.
7. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS

$G N D=0 V ; t_{R}=t_{F}=2.5 n s ; C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS				UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			MIN	TYP ${ }^{1}$	MAX	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	150				MHz
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay $n A x$ to $n B x$ or $n B x$ to $n A x$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.4 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay nCPAB to $n B x$ or nCPBA to nAx	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.2 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PPHL }} \end{aligned}$	Propagation delay nSAB to nBx or nSBA to nAx	2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \\ & \hline \end{aligned}$	Output enable time to High and Low level	$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.2 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output disable time from High and Low Level	$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.7 \end{aligned}$	ns
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output Enable time nDIR to $n A x$ or nBx	$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	ns
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Output Disable time n DIR to $n A x$ or $n B x$	$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 5.7 \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$	UNIT
			MIN	TYP	MIN	
$\begin{aligned} & \mathrm{ts}(\mathrm{H}) \\ & \mathrm{ts}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $n A x$ to nCPAB or nBx to nCPBA	4	$\begin{aligned} & 1.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.4 \end{aligned}$	ns
$\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold time, High or Low $n A x$ to $n C P A B$ or $n B x$ to nCPBA	4	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	ns
tw(H) tw(L)	Pulse width, High or Low nCPAB or nCPBA	1	$\begin{aligned} & 2.6 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.8 \end{aligned}$	ns

AC WAVEFORMS

[^1]

Waveform 2. Propagation Delay, nSAB to $n B x$ or nSBA to $n A x$, $n A x$ to $n B x$ or $n B x$ to $n A x$

Waveform 3. Propagation Delay, nSBA to $n A x$ or nSAB to $n B x$

Waveform 4. Data Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.8	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.20 \end{aligned}$	0.25	$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 18.55 \\ & 18.30 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	0.635	$\begin{aligned} & 10.4 \\ & 10.1 \end{aligned}$	1.4	$\begin{aligned} & 1.0 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	0.25	0.18	0.1	$\begin{aligned} & 0.85 \\ & 0.40 \end{aligned}$	8° 0

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT371-1		MO-118AB			$-93-11-02$	

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}
mm	1.2	0.15	1.05	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1.0	0.8 0.4	0.50	0.35	0.25	0.08	0.1

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

[^0]: H = High voltage level
 $L=$ Low voltage level
 X = Don't care
 $\uparrow=$ Low-to-High clock transition

 * The data output function may be enabled or disabled by various signals at the $n \overline{O E}$ input. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.

[^1]: Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

