SEMICONDUCTOR

74ALVC16245

Low Voltage 16-Bit Bidirectional Transceiver with 3.6V Tolerant Inputs and Outputs

General Description

The ALVC16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate 3-STATE control inputs which can be shorted together for full 16-bit operation. The T/R inputs determine the direction of data flow through the device. The OE inputs disable both the A and B ports by placing them in a high impedance state.

The 74ALVC16245 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

The 74ALVC16245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

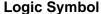
Features

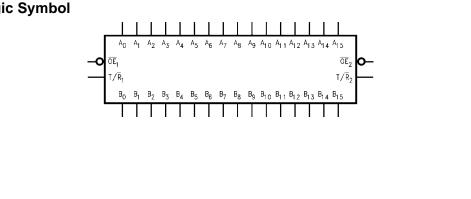
- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD}
- 3.0 ns max for 3.0V to 3.6V V_{CC} 3.5 ns max for 2.3V to 2.7V V_{CC}
- 6.0 ns max for 1.65V to 1.95V V_{CC}
- Power-down high impedance inputs and outputs

October 2001

Revised August 2002

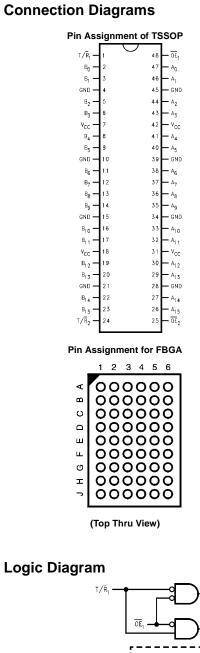
- Supports live insertion/withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance:
 - Human body model > 2000V Machine model >200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)


Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.


Ordering Code:

Order Number	Package Number	Package Description
74ALVC16245G (Note 2)(Note 3)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74ALVC16245MTD (Note 3)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 2: Ordering code "G" indicates Travs.


Note 3: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2002 Fairchild Semiconductor Corporation DS500678

74ALVC16245

Pin Descriptions

Pin Names	Description			
<u>OE</u> n	Output Enable Input (Active LOW)			
T/R _n	Transmit/Receive Input			
A ₀ -A ₁₅	Side A Inputs or 3-STATE Outputs			
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs			
NC	No Connect			

FBGA Pin Assignments

	1	2	3	4	5	6
Α	B ₀	NC	T/R ₁	OE ₁	NC	A ₀
В	B ₂	B ₁	NC	NC	A ₁	A ₂
С	B ₄	B ₃	V _{CC}	V _{CC}	A ₃	A ₄
D	B ₆	B ₅	GND	GND	A ₅	A ₆
E	B ₈	В ₇	GND	GND	A ₇	A ₈
F	B ₁₀	B ₉	GND	GND	A ₉	A ₁₀
G	B ₁₂	B ₁₁	V _{CC}	V _{CC}	A ₁₁	A ₁₂
Н	B ₁₄	B ₁₃	NC	NC	A ₁₃	A ₁₄
J	B ₁₅	NC	T/R_2	OE ₂	NC	A ₁₅

Truth Tables

Inj	outs	2 (1) (1)			
OE ₁	T/R ₁	Outputs			
L	L	Bus B ₀ –B ₇ Data to Bus A ₀ –A ₇			
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇			
Н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇			
Inp	outs	Outraste			
OE ₂	T/R ₂	Outputs			
L	L	Bus B ₈ –B ₁₅ Data to Bus A ₈ –A ₁₅			
L	н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅			

HIGH Z State on A8-A15, B8-B15

H = HIGH Voltage Level

н

Х

L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs and I/O's may not float) Z = High Impedance

T/R₂ OE, 1 of 16

Absolute Maximum Ratings(Note 4)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 5)	–0.5V to V_CC +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V_{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T_{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

74ALVC16245

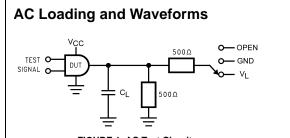
Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Floating or unused control inputs must be held HIGH or LOW.

Symbol	Parameter	Conditions	V _{cc}	Min	Max	Units
Symbol	Farameter	Conditions	(V)	WIIII	WIAA	
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 12 mA	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μA

DC Electrical Characteristics


74ALVC16245

AC Electrical Characteristics

Symbol Parameter				T _A =	= –40°C to +	85°C, R _L = 5	5 00 Ω			
	C _L = 50 pF			C _L = 30 pF			Units			
Symbol Parameter		$V_{CC} = 3.3V \pm 0.3V$		V _{CC} =	V _{CC} = 2.7V V		$\textbf{V}_{\textbf{CC}} = \textbf{2.5V} \pm \textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$	
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay	1.3	3	1.5	3.5	1.0	3.0	1.5	6.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.3	1.5	5.4	1.0	4.9	1.5	9.3	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	ns

Capacitance

Symbol	Parameter		Conditions	$T_A = +25^{\circ}C$		Units
Symbol Parameter		Conditions	V _{CC}	Typical		
CIN	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
CIO	Input, Output Capacitance		$V_0 = 0V \text{ or } V_{CC}$	3.3	7	pF
CPD	Power Dissipation Capacitance Outputs Enabled		$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	20	pF
				2.5	20	pi

TABLE 1	1. Values f	or Figure 1
---------	-------------	-------------

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	VL
t _{PZH} , t _{PHZ}	GND

74ALVC16245

FIGURE 1. AC Test Circuit	
---------------------------	--

TABLE 2. Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; Z_O = 50 Ω)

Symbol		V	cc	
Symbol	$\textbf{3.3V} \pm \textbf{0.3V}$	2.7V	$\textbf{2.5} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2
V _X	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V
V _Y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	V _{OH} – 0.15V
VL	6V	6V	V _{CC} *2	V _{CC} *2

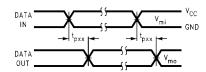


FIGURE 2. Waveform for Inverting and Non-inverting Functions

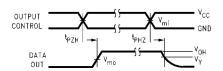


FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

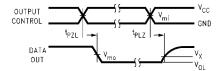
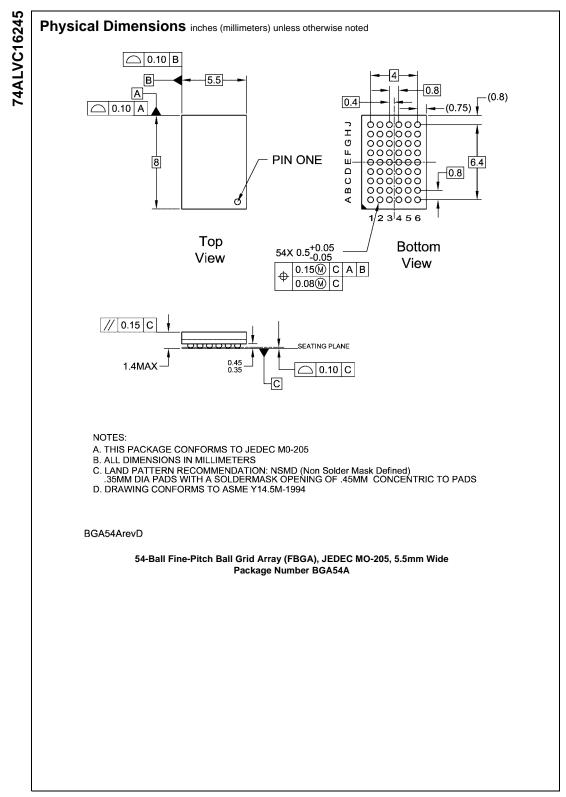
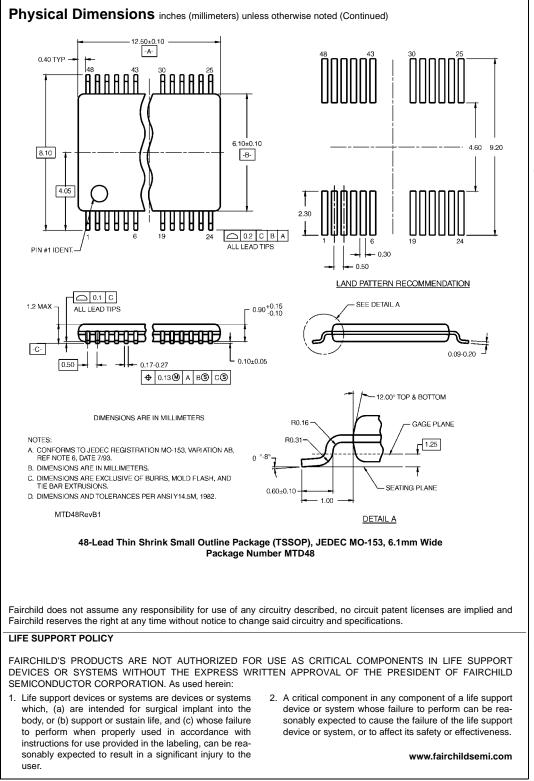




FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

