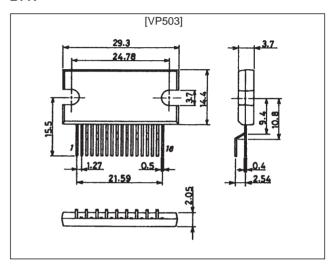


CRT Display Video Output Amplifier: High-Voltage, Wideband Amplification


Function

• Three-channel video output circuit for CRT displays

Package Dimensions

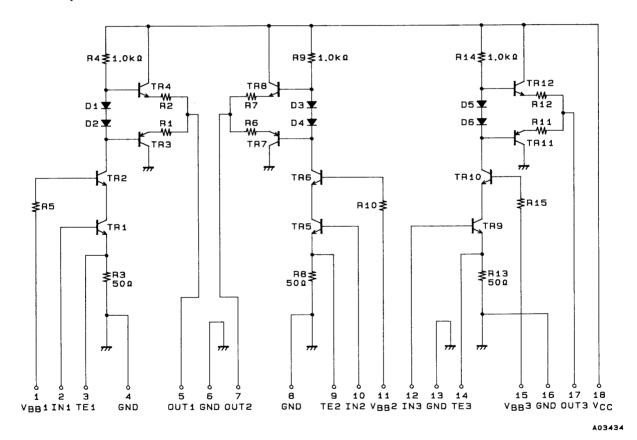
unit: mm

2117

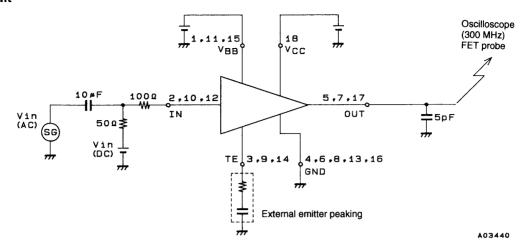
Specifications

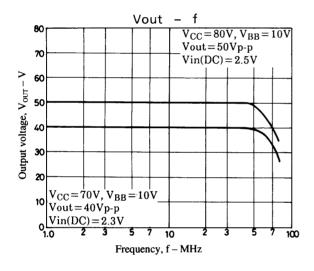
Absolute Maximum Ratings at Ta = 25°C

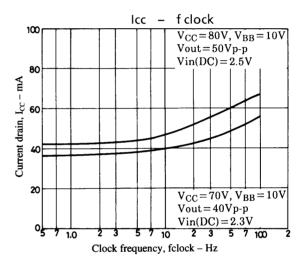
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		90	V
	V _{BB} max		15	V
Allowable power dissipation	Pd max		4.5	W
	Fulliax	At Tc = 25°C with an ideal heat sink	25	W
Case temperature	Tc max		100	°C
Storage temperature	Tstg		-20 to +110	°C

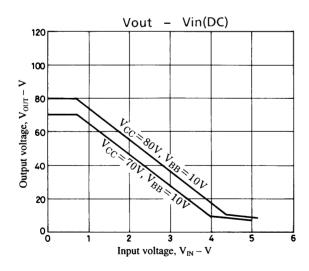

Operating Conditions at $Ta = 25^{\circ}C$

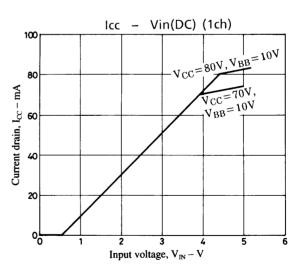
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage I	V _{cc}		70	V
	V _{BB}		10	V
Recommended supply voltage II	V _{cc}		80	V
	V _{BB}		10	V

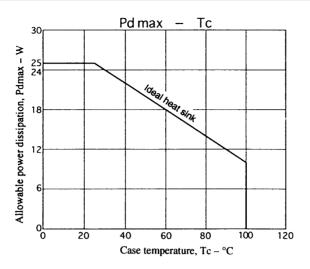

Electrical Characteristics at $Ta = 25^{\circ}C$

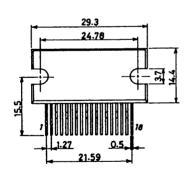

Parameter	Symbol	Conditions	Ratings			Linit
			min	typ	max	Unit
Bandwidth I (-3 dB)	fc	$V_{CC} = 70 \text{ V}, V_{BB} = 10 \text{ V}, C_L = 5 \text{ pF},$ $V_{IN} (DC) = 2.3 \text{ V}, V_{OUT} (p-p) = 40 \text{ V}$		80		MHz
Bandwidth II (-3 dB)	fc	$V_{CC} = 80 \text{ V}, V_{BB} = 10 \text{ V}, C_L = 5 \text{ pF},$ $V_{IN} (DC) = 2.5 \text{ V}, V_{OUT} (p-p) = 50 \text{ V}$		75		MHz
Pulse response characteristics	tr	V _{CC} = 80 V, V _{BB} = 10 V, C _L = 5 pF,		5.0		ns
Tuise response characteristics	tf	V_{IN} (DC) = 2.3 V, V_{OUT} (p-p) = 40 V		5.0		ns
Voltage gain	G _V (DC)		17	19	21	
	I _{cc} 1	$V_{CC} = 70 \text{ V}, V_{BB} = 10 \text{ V}, V_{IN} (DC) = 2.3 \text{ V}, \\ f = 10 \text{ MHz clock}, C_L = 5 \text{ pF}, V_{OUT} (p-p) = 40 \text{ V}$		40		mA
Current drain I	I _{CC} 2	$V_{CC} = 70 \text{ V}, V_{BB} = 10 \text{ V}, V_{IN} (DC) = 2.3 \text{ V}, \\ f = 70 \text{ MHz clock}, C_L = 5 \text{ pF}, V_{OUT} (p-p) = 40 \text{ V}$		50		mA
Current drain II	I _{CC} 1	$V_{CC} = 80 \text{ V}, V_{BB} = 10 \text{ V}, V_{IN} (DC) = 2.5 \text{ V}, \\ f = 10 \text{ MHz clock}, C_L = 5 \text{ pF}, V_{OUT} (p-p) = 50 \text{ V}$		45		mA
	I _{CC} 2	$ \begin{array}{c} V_{CC} = 80 \text{ V}, V_{BB} = 10 \text{ V}, V_{IN} (DC) = 2.5 \text{ V}, \\ f = 70 \text{ MHz clock}, C_L = 5 \text{ pF}, V_{OUT} (p\text{-}p) = 50 \text{ V} \end{array} $		60		mA


Internal Equivalent Circuit

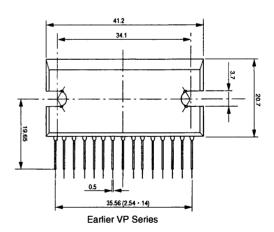



Test Circuit




Product Features

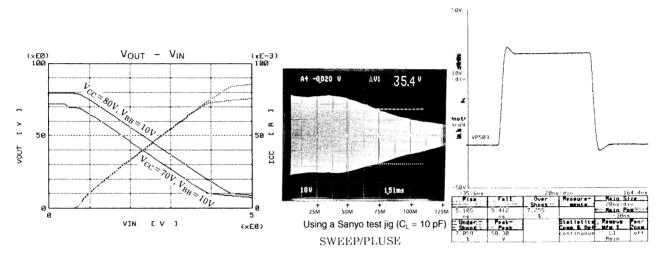
The new VP503 series video packs provide the following features:


- 80 MHz operation and with three channels provided in a single package. The tr and tf times are 5 ns, as tested by Sanyo with $C_L = 10$ pF.
 - Cascode plus emitter follower circuit structure
- Newly developed ultrahigh-frequency bipolar transistors adopted
- Ultraminiature package for a size reduction of 1/2 over the earlier Sanyo VPS series. This package supports standard zigzag forming.

Also, as shown in the figure below, 100 to 250-MHz product series are under development.

Package Dimensions

Newly developed VP Series


Operating Procedures

1. Setting the operating point

An optimal DC bias must be provided to operate a video pack and acquire the stipulated output dynamic range and bandwidth characteristics. Basically, the center point output voltage with no input should be set according to the following formula.

$$V_0$$
 (CENTER) = $(V_{CC} + V_{BB})/2$

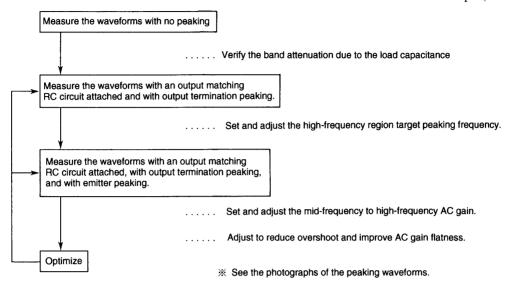
While the optimal operating point when an AC input is applied will be similar, the recommended electrical characteristics should be referred to when setting the operating point. The figures below show the DC and AC waveforms when the Sanyo test jig is used. The design of this product series was optimized so that these products provide adequate high-power characteristics.

2. Optimal peaking technique for mounted products (VP503 Series)

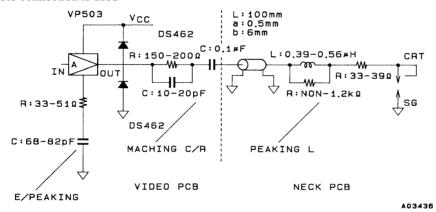
• Termination LC peaking

As can be seen from the internal equivalent circuit diagram, this series differs from earlier series in that peaking is not applied using an internal coil. Since the high-frequency region peaking point is determined by an LC resonator at the termination, the total distributed capacitance of the output side is particularly important. Accordingly, since the independent evaluation board timing characteristics will differ from the actual output load capacitance when an output cable is installed, the high-frequency area peaking point that corresponds to the output load state in the mounted circuit must be found.

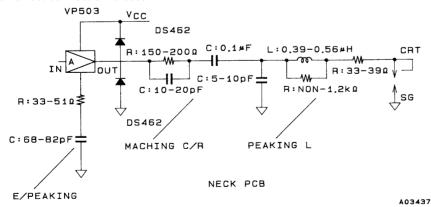
(Adjust the circuit using an output matching RC circuit at the same time.)


• RC emitter peaking

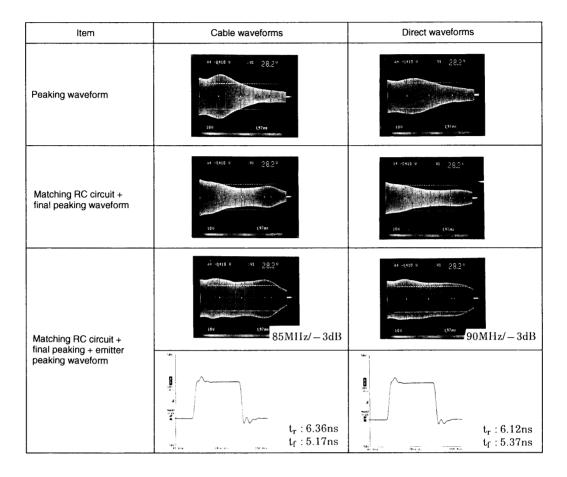
The purpose of the emitter peaking value is to increase the AC gain from the mid-frequency area to the high-frequency area. This should be determined last, after adjusting the termination peaking and output peaking RC circuits. (To compensate for high-frequency gain degradation at the IC side.)


• Output matching RC circuit

This circuit is used in conjunction with the peaking compensation in each section to match the IC internal impedance with the output load impedance. Mount this RC circuit in the vicinity of the protection diode and the IC output pins. Adjust this circuit to correct system characteristics while observing the mid-frequency characteristics, the amount of overshoot in the pulse response, and other aspects. Since the AC gain from the mid-frequency area to the high-frequency area will be reduced somewhat by this adjustment, determine the setting by adjusting the value of the resistor precisely.


The required circuit operating conditions can be set up smoothly if the following flowchart is used to adjust the peaking values.

• Sample IC peripheral peaking compensation settings When cable connection is used



• When direct connection is used

Note: * Install a capacitor with the required value for the termination LC resonator.

Peaking Waveforms

Thermal Design for the VP503

We recommended that the VP503 be used with the operating case temperature, Tc, under 100°C. Since the VP503 includes three channels, we first consider a single channel. The chip temperature of each transistor under actual operating conditions is determined using the following formula.

$$Tj = (Tri) = \theta j-c \ (Tri) \times Pc \ (Tri) + \Delta Tc + Ta \ [^{\circ}C] \dots (1)$$

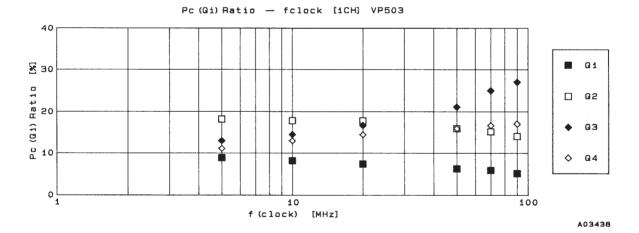
 $\theta j\text{-c}$ (Tri): Thermal resistance of an individual transistor

Pc (Tri): Collector loss for an individual transistor

ΔTc: Case temperature riseTa: Ambient temperature

The θ j-c(Tri) for each chip is:

$$\theta$$
j-c (Tr2) to (Tr4) = 30°C/W.....(2)


Although the loss for each transistor in a Video Pack varies with frequency and is not uniform, if we assume that the maximum operating frequency, f = 85 MHz (clock), then the chips with the largest loss will be transistor 3 and that loss will be about 1/4 of the total loss. Thus from the Pd for a single channel we have:

Pc (Tr3)
$$f = 85 \text{ MHz} = \text{Pd} (1\text{CH}) f = 85 \text{ MHz} \times 0.25 \text{ [W]} \dots (3)$$

Here, we must select a heat sink with a capacity θ h such that the Tj of these transistors does not exceed 150°C. Equation (4) below gives the relationship between θ h and Δ Tc.

$$\Delta Tc = Pd (TOTAL) \times \theta h$$
(4)

The required θ h is calculated using this equation and equation (1).

VP503 Thermal Design Example

Conditions: Using an $f_H = 64$ kHz class monitor, $f_V = 85$ MHz (clock)

$$V_{CC} = 80 \text{ V}, V_{BB} = 10 \text{ V}, V_{OUT} = 50 \text{ Vp-p } (C_L = 10 \text{ pF})$$

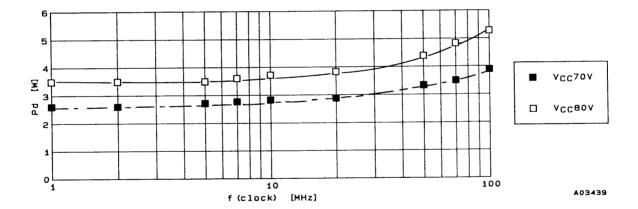
Since this class of monitor can be operated up to $Ta = 60^{\circ}C$, here we consider the case where the maximum clock frequency is 85 MHz.

As mentioned previously, the chip with the largest loss is transistor Tr3. Determining the value gives:

$$Pc (Tr3) = 5.0 \times 0.25 = 1.25 [W]$$
 (5)

We determine ΔT_i by substituting the value for θ_i -c in equation (5).

$$\Delta T_j = 1.25 \times 30 = 38 \, [^{\circ}C]$$
 (6)


Here, ΔTj is less than 50°C, and in the thermal design we only have to assure that Tc is less than 100°C. That is, we must set θh so that Tc is less than 100°C when Pd (TOTAL) = Pd (one channel) $\times 3$

Here, ΔTc will be $\Delta Tc = 100 - 60 = 40^{\circ}C$

Since
$$\theta h = \Delta Tc \div Pd$$
 (TOTAL) = $40 \div (5.0 \times 3) \approx 2.6^{\circ}C/W$

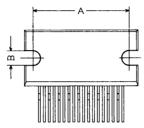
Thus the thermal resistance in this case is $\theta h = 2.6$ °C/W.

In actual practice, the ambient temperature and operating conditions will allow a heat sink smaller than that indicated by this calculation to be used. Therefore, design optimization taking the actual conditions into account is also required.

Surge Protection

Surge protection is required when this device is connected to a CRT. This product requires the same protection as earlier products.

- 1. Termination spark gap
- 2. Surge suppression resistor (Recommended value: 33 to 39 Ω)
- 3. Surge suppression diode (Installed in the vicinity of the IC output pin.)

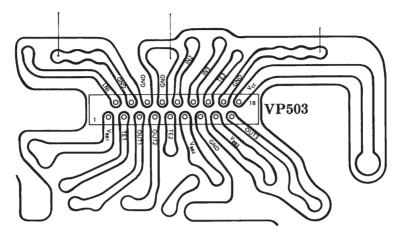

Note: The value of surge suppression resistors must be determined taking both the stipulated discharge test and the required frequency bandwidth into account. Note that the surge withstanding capacity of these products as independent video packs is equivalent to that of earlier products, e.g., the VPS Series.

Application Notes

Mounting notes:

Since the specified heat sink is required to operate a mounted Video Pack, we recommend the following mounting technique. (See the thermal design item for details on the required heat sink.) In particular, since the package used for this product is even more compact than that used in the earlier VPS series, the following points require special care. (These are recommendations.)

- 1. A tightening torque of between 0.39 and 0.88 N-m is recommended.
- 2. The bolt hole spacing in the heat sink should match that of the IC. In particular, the bolt hole spacing should be pulled in to be as close as possible, within the range that mounting is possible, to the dimensions A and B in the package dimensions drawing, as shown below.



- 3. Use either the truss screws (truss bolts) or binding screws stipulated in the JIS standards as the mounting bolts. Also, use washers to protect the IC case.
- 4. Foreign matter, such as machining chips, must not be left trapped between the IC case and the heat sink. If grease is applied to the junction surface, be sure to apply the grease evenly.
- 5. Solder the IC leads to the printed circuit board after mounting the heat sink to the IC.

Note: The heat sink is absolutely required to operate this Video Pack. Never, in any situation, apply power to a Video Pack as an independent device. The Video Pack may be destroyed.

Peripheral wiring and ground leading:

When shipped, the VP503 product lead pins have standard support for forming (zigzag) so that the distance between pins will be 2.54 mm. Also, the pin layout is standardized to the I/O and power supply line arrangement shown below.

IC Surrounding Pin Layout (Top view)

Note: Design applications that use two-sided printed circuit boards or similar technologies so that input and output lines do not cross. Crossed lines can lead to increased crosstalk. Also, lines should be kept as short as possible, and lines in the ground pattern should be made as wide as possible. These layout design principles will minimize bandwidth degradation and oscillation.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1997. Specifications and information herein are subject to change without notice.